摘要:
A method for measuring the conduction velocity of a depolarization wave in a tissue employs a first satellite located within the tissue and a second that satellite is located within the tissue a distance away from the first satellite, e.g., by using the time of depolarization wave as reported from each satellite and the distance to determine velocity of the wave. Also provided are systems and kits that find use in accordance with the invention.
摘要:
One embodiment of the present invention provides a system for automatically optimizing CRT procedures using a multi-electrode pacing lead. During operation, the system performs a first set of iterations to select one or more satellites on one or more pacing leads inserted in a patient. A pacing lead includes a plurality of pacing satellites, and a pacing satellite includes a plurality of electrodes that can be individually addressed and used for transmitting or detecting electric signals. The system then performs a second set of iterations to select one or more electrodes on the selected satellites. The system further performs a third set of iterations to select one or more timing configurations for pacing signals transmitted through one or more of the selected electrodes.
摘要:
Implantable pressure sensors and methods for making and using the same are provided. A feature of embodiments of the subject pressure sensors is that they are low-drift sensors. The subject sensors find use in a variety of applications.
摘要:
In a first embodiment, electrodes are coupled to a surface at first, second, and third locations, the first location being further from the third location than from the second location. Impedance is measured at distinct frequencies between pairs of the electrodes. As a result, impedance is measured at differing regions below the surface, one region being deeper below the surface than the other region. In a second embodiment, a microfluidic device carries out an analysis. The analysis may be within a flexible patch adhered to a surface, or may be in a solid device implanted in a body of liquid surrounded by tissue. The analysis may involve pumping a fluid or may involve drawing an analyte electrophoretically through a microfluidic channel.
摘要:
The present invention provides implantable systems that communicate wirelessly with each other using a unique format that enables devices configurations and applications heretofore not possible. Embodiments of the present invention provide communication apparatuses and methods for exchanging information with implantable medical devices. In some embodiments, two implantable devices communicate with each other using quasi-electrostatic signal transmission in a long wavelength/low frequency electromagnetic band, with the patient's body acting as a conductive medium.
摘要:
Aspects of the invention include multi-mode communication ingestible event marker devices. Ingestible event marker devices of the invention include an ingestible component comprising a conductive communication module and at least one additional non-conductive communication module. The non-conductive communication module may be integrated with the ingestible component or at least a portion or all of the non-conductive communication module may be associated with a packaging component of the ingestible event marker device. Additional aspects of the invention include systems that include the devices and one or more receivers, as well as methods of using the same.
摘要:
In a first embodiment, electrodes are coupled to a surface at first, second, and third locations, the first location being further from the third location than from the second location. Impedance is measured at distinct frequencies between pairs of the electrodes. As a result, impedance is measured at differing regions below the surface, one region being deeper below the surface than the other region. In a second embodiment, a microfluidic device carries out an analysis. The analysis may be within a flexible patch adhered to a surface, or may be in a solid device implanted in a body of liquid surrounded by tissue. The analysis may involve pumping a fluid or may involve drawing an analyte electrophoretically through a microfluidic channel.
摘要:
Techniques for controlling one or more modular circuits (“satellites”) that are intended for placement in a subject's body. The one or more satellites are controlled by sending signals over a bus that includes first and second conduction paths. Also coupled to the bus in system embodiments is a device such as a pacemaker that provides power and includes control circuitry. Each satellite includes satellite circuitry and one or more effectors that interact with the tissue. The satellite circuitry is coupled to the bus, and thus interfaces the controller to the one or more effectors, which may function as actuators, sensors, or both. The effectors may be electrodes that are used to introduce analog electrical signals (e.g., one or more pacing pulses) into the tissue in the local areas where the electrodes are positioned (e.g., heart muscles) or to sense analog signals (e.g., a propagating depolarization signal) within the tissue.
摘要:
Techniques for controlling one or more modular circuits (“satellites”) that are intended for placement in a subject's body. The one or more satellites are controlled by sending signals over a bus that includes first and second conduction paths. Also coupled to the bus in system embodiments is a device such as a pacemaker that provides power and includes control circuitry. Each satellite includes satellite circuitry and one or more effectors that interact with the tissue. The satellite circuitry is coupled to the bus, and thus interfaces the controller to the one or more effectors, which may function as actuators, sensors, or both. The effectors may be electrodes that are used to introduce analog electrical signals (e.g., one or more pacing pulses) into the tissue in the local areas where the electrodes are positioned (e.g., heart muscles) or to sense analog signals (e.g., a propagating depolarization signal) within the tissue.
摘要:
Methods for locating a sensor element in vivo, e.g., during evaluation of tissue motion, such as of a cardiac tissue motion, e.g., heart wall motion, via electric tomography are provided. In the subject methods, an electric field is applied to a subject in a manner such that the sensing element is present in the applied electric field, and a property of, e.g., a change in, the applied electric field sensed by the sensing element is employed to evaluate a patient internal parameter of interest, e.g., to evaluate movement of tissue location, to evaluate a internal device parameter, such as movement thereof, etc. The invention allows for robust noise discrimination, e.g., by employing a spread spectrum applied electric field. Also provided are systems and devices for practicing the subject methods. In addition, innovative data displays and systems for producing the same are provided. The subject methods and devices find use in a variety of different applications, including cardiac resynchronization therapy.