摘要:
A flat lamp structure is disclosed. The flat lamp structure includes a gas discharge chamber, a fluorescence substance, a discharge gas, and a plurality of electrodes. The fluorescence substance is disposed on the inner wall of the gas discharge chamber, and the discharge gas is disposed in the gas discharge chamber. The electrodes are disposed on the outer wall of the gas discharge chamber, wherein the gas discharge chamber comprises a dielectric substrate, a plate, and a plurality of rods, and the plate is disposed on the upper portion of the dielectric substrate and the rods are disposed between the plate and the dielectric substrate, and the plate and the edge of dielectric are connected. Additionally, the gas discharge chamber, for example, can dispose with at least a spacer to enhance the strength of the gas discharge chamber.
摘要:
A heat dissipating apparatus includes a thermal conducting base and heat pipes connected to the thermal conducting base. Each heat pipe includes a heated section and a heat dissipating section. The portion connected to the thermal conducting base is the heated section, and the heat dissipating section is extended outward from the thermal conducting base. In the heat pipes, at least one heat dissipating section of the heat pipe is extended outward from a lateral side of the thermal conducting base, and the heat dissipating section of the heat pipe is situated at a position higher than the heated section, and fins are disposed on the heat dissipating section of the heat pipe. Therefore, the heat pipe guides the heat absorbed by thermal conducting base to a lateral side to dissipate heat from a nearby heat source.
摘要:
Disclosed are a multi-layer substrate and a manufacturing method of the multi-layer substrate. By employing a carrier to alternately form dielectric layers and metal structure layers thereon. Each dielectric layer adheres with the adjacent dielectric layer to embed the metal structure layers in the dielectric layers corresponding thereto. Comparing with prior arts, which have to use prepregs when hot pressing and adhering different layers of different materials, the present invention takes fewer processes, thus, fewer kinds of materials without using prepregs. Therefore, the present invention can promote the entire quality and yield of manufacturing the multi-layer substrate to satisfy mechanical characteristic matching of the multi-layer substrate and to reduce cost of the whole manufacturing process. Significantly, the multi-layer substrate having thin dielectric layers according to the present invention can satisfy the concern of impedance matching therefore, and can reduce crosstalk influence to keep good signal integrity therein.
摘要:
An LED is bonded to a circuit board. The circuit board comprises a chip mounting area, a bonding pad, and a connecting portion. The LED is mounted on the chip mounting area with an adhesive, and the bonding pad is connected with an electrode of the LED. Moreover, the connecting portion is positioned between the chip mounting area and the bonding pad. One side of the connecting portion is connected with the chip mounting area and another side is connected with the bonding pad. With a hollow portion of the connecting portion, the adhesive will be prevented from flowing to the bonding pad.
摘要:
An LED is bonded to a circuit board. The circuit board comprises a chip mounting area, a bonding pad, and a connecting portion. The LED is mounted on the chip mounting area with an adhesive, and the bonding pad is connected with an electrode of the LED. Moreover, the connecting portion is positioned between the chip mounting area and the bonding pad. One side of the connecting portion is connected with the chip mounting area and another side is connected with the bonding pad. With a hollow portion of the connecting portion, the adhesive will be prevented from flowing to the bonding pad.
摘要:
Disclosed are a multi-layer substrate and a manufacturing method of the multi-layer substrate. By employing a carrier to alternately form dielectric layers and metal structure layers thereon. Each dielectric layer adheres with the adjacent dielectric layer to embed the metal structure layers in the dielectric layers corresponding thereto. Comparing with prior arts, which have to use prepregs when hot pressing and adhering different layers of different materials, the present invention takes fewer processes, thus, fewer kinds of materials without using prepregs. Therefore, the present invention can promote the entire quality and yield of manufacturing the multi-layer substrate to satisfy mechanical characteristic matching of the multi-layer substrate and to reduce cost of the whole manufacturing process. Significantly, the multi-layer substrate having thin dielectric layers according to the present invention can satisfy the concern of impedance matching therefore, and can reduce crosstalk influence to keep good signal integrity therein.
摘要:
A light emitting diode (LED) package and a manufacturing method therefore are disclosed. The LED package comprises: a transparent substrate, a transparent LED chip, a transparent adhesive for bonding the transparent LED chip, a lead frame, conductive wires, and an encapsulant. In the manufacturing method, a heating step is first performed to heat a first transparent plastic material to be a sticky member. Thereafter a connecting step is performed to connect the lead frame to the sticky member. Then a chip-bonding step is performed to bond the LED chips on the sticky member. Thereafter a wire-bonding step is performed to electrically connect the transparent LED chip to the lead frame. Then an encapsulating step is performed to encapsulate the transparent LED chips with a second transparent plastic material. Thereafter a drying step is performed to form the shapes of the sticky member and the second transparent plastic material.
摘要:
A light emitting diode (LED) package and a manufacturing method therefore are disclosed. The LED package comprises: a transparent substrate, a transparent LED chip, a transparent adhesive for bonding the transparent LED chip, a lead frame, conductive wires, and an encapsulant. In the manufacturing method, a heating step is first performed to heat a first transparent plastic material to be a sticky member. Thereafter a connecting step is performed to connect the lead frame to the sticky member. Then a chip-bounding step is performed to bond the LED chips on the sticky member. Thereafter a wire-bonding step is performed to electrically connect the transparent LED chip to the lead frame. Then an encapsulating step is performed to encapsulate the transparent LED chips with a second transparent plastic material. Thereafter a drying step is performed to form the shapes of the sticky member and the second transparent plastic material.
摘要:
A cooling apparatus includes a base, a plurality of first heat pipes, a plurality of second heat pipes, a plurality of first heat conducting columns and a plurality of second heat conducting columns. Each of the first heat pipes and the second heat pipes respectively has a heat-absorbing terminal. The heat-absorbing terminals of the first heat pipes are disposed on the base spaced at intervals. The heat-absorbing terminals of the second heat pipes are stacked above the heat-absorbing terminals of the first heat pipes spaced at intervals. Each of the first heat conducting columns is installed between the heat-absorbing terminals of the two adjacent first heat pipes. Each of the second heat conducting columns is installed between the heat-absorbing terminals of the two adjacent second heat pipes. Thereby, the heat conducting area is increased within the base, and the cooling efficiency of the cooling apparatus is enhanced.