摘要:
A method of fabricating flash erasable programmable read only memory. A substrate having an isolation structure is provided. A tunnel oxide layer and a floating gate layer are formed in sequence over substrate and are patterned. An ion implantation is performed and a first doped region is formed in the substrate. An oxidation step is performed to form a first oxide layer over the substrate. A nitride/oxide layer and a control gate layer are formed in sequence over the substrate. The control gate layer, the nitride/oxide layer, the first oxide layer, and the floating gate layer are patterned until the substrate is exposed. An ion implantation step is performed to form a common source region and a drain region in the substrate. Spacers are formed over the sidewalls of the control gate layer, the nitride/oxide layer, the first oxide layer, and the floating gate layer. A self-aligned silicide step is performed to form silicide layers over the control gate layer, the common source region, and the drain region.
摘要:
A method of fabricating an EPROM memory increases a coupling ratio and reduces lateral diffusion by forming a gate oxide layer and a coupling insulator individually. A substrate is provided with a field oxide layer to isolate a predetermined active area. A gate oxide layer is formed on the substrate. On the field oxide layer and the gate oxide layer, a polysilicon layer is deposited and defined, whereby a portion of this polysilicon layer and gate oxide layer form a gate electrode. Using the gate electrode as a mask, the substrate is implanted with impurities to provide source and drain electrodes. A dielectric layer is formed on polysilicon layer. A contact window (via) is formed in a predetermined area of dielectric layer. An insulator is deposited and defined by etching, on dielectric layer and the contact window. On the insulator and dielectric layer, a metal contact layer is deposited and defined to cover the insulator.
摘要:
A pet combination house includes a housing and a connecting unit. The housing includes a plurality of plates, with a folding line being formed at a connection of two plates. The plates are folded upward along the folding line and are connected together to construct the housing. Some of the plates have a side respectively provided with a fastening member. The fastening members of the plates are detachably combined together in pairs when the housing is disposed at the three-dimensional state. At least one of the plates is provided with an opening. At least one of the plates has a face provided with a plurality of apertures. The connecting unit includes a plurality of retaining members mounted on the plates and aligning with the apertures, and a plurality of connecting members mounted in the apertures and retained by the retaining members.
摘要:
A foldable container sleeve adapted to sleeve around a container includes a sleeve body for sleeving around the container. The sleeve body includes an insulating layer for wrapping around and contacting the container, a laminating layer disposed along and connected to an exterior surface of the insulating layer, and a smooth layer disposed along and connected to an exterior surface of the laminating layer. The insulating layer is made of a polyethylene foam material, the laminating layer is made of a polyethylene material, and the smooth layer is made of a thermoplastic material.
摘要:
A display panel having a display region and a non-display region is provided. The display panel includes a plurality of pixel structures in the display region, and each pixel structure includes a scan line, a data line, a first active device, a pixel electrode, a first insulating layer, a capacitor electrode, and a second insulating layer. The first active device includes a first gate, a first channel, a first source, and a first drain. The second insulating layer covers the first insulating layer and the capacitor electrode and is located between the capacitor electrode and the first drain. At least one driving circuit is disposed in the non-display region and includes at least one second active device. Hence, a relatively thin insulating layer can be disposed between the capacitor electrode and the drain to reduce the area of the capacitor region and to achieve a desired aperture ratio.
摘要:
A virtual machine monitoring method used in a virtual machine monitoring system is provided. The virtual machine monitoring method includes retrieving a hypercall transmitted from one of a plurality of virtual machines to a hypervisor of a virtual machine monitoring system, wherein the hypercall is used for establishing a channel between a source virtual machine and a target virtual machine. A central control virtual machine ID information in the hypervisor is retrieved. A type of the channel established by the hypercall is determined according to the central control virtual machine ID information and channel-establishing information corresponding to the hypercall. When the channel is a private channel that is not related to a central control virtual machine of the virtual machines, a security module is used to monitor the private channel.
摘要:
This invention in one aspect relates to a pixel structure. In one embodiment, the pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode formed over the switch, a plane organic layer formed over the date line and the pixel area and having no overlapping with the shielding electrode, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode and the plane organic layer in the pixel area, wherein the first portion is overlapped with the shielding electrode so as to define a storage capacitor therebetween, and the second portion overlays the plane organic layer and has no overlapping with the data line.
摘要:
A pixel structure includes a first electrode on a substrate, a first insulation layer covering the first electrode, a gate located on the first insulation layer, a second electrode located on the first insulation layer above the first electrode, a second insulation layer covering the gate and the second electrode, a semiconductor layer located on the second insulation layer above the gate, a source and a drain that are located on the semiconductor layer, a third electrode, a third insulation layer, and a pixel electrode. The third electrode is located on the second insulation layer above the second electrode and electrically connected to the first electrode. The third insulation layer covers the source, the drain, and the third electrode. The pixel electrode is located on the third insulation layer and electrically connected to the drain.