摘要:
A semiconductor device formed on a semiconductor substrate having an active region and a method of making the same is disclosed. The semiconductor device includes a dielectric layer interposed between a gate electrode and the semiconductor substrate. Further, the semiconductor device includes graded dielectric constant spacers formed on sidewalls of the dielectric layer, sidewalls of the gate electrode and portions of an upper surface of the semiconductor substrate. The dielectric constant of the graded dielectric constant spacers decreases in a direction away from the sidewalls of the dielectric layer.
摘要:
A process for forming sub-lithographic features in an integrated circuit is disclosed herein. A process for enhancing the etch trimmability and the etch stability of features patterned on a photoresist layer is also disclosed herein. The process includes curing a photoresist layer after patterning and development but before an etch process is performed thereon. By controlling the formation of the cured portions of the features patterned on the photoresist layer, the features can be trimmed to sub-lithographic critical dimensions without pattern deformation or occurrence of other failure mechanisms.
摘要:
A process for preventing deformation of patterned photoresist features during integrated circuit fabrication is disclosed herein. The process includes stabilizing the patterned photoresist features by a flood electron beam before one or more etch processes. The stabilized patterned photoresist features resist pattern bending, breaking, collapsing, or deforming during a given etch process. The electron beam stabilization can be applied to the patterned photoresist features a plurality of times as desired.
摘要:
A process for fabricating a semiconductor device includes the formation of a hard-mask using lithographic techniques, followed by an oxidation process to reduce the lateral dimension of the hard-mask. The oxidation process is carried out by selectively oxidizing an oxidizable layer overlying an etch-stop layer. Upon completion of the oxidation process, the etch-stop layer is removed and a residual layer of oxidizable material is then used as a mask for the formation of a device component. The lateral dimension of the residual layer can be substantially less than that achievable by optical lithographic techniques.
摘要:
A process for fabricating a semiconductor device includes the formation of a hard-mask using lithographic techniques followed by a selective silicidation reaction process to reduce the lateral dimension of the hard-mask. The silicidation reaction is carried out by selectively reacting a reaction layer situated between an etch-stop layer and a reaction resistant layer. Upon completion of the chemical reaction process, the etch-stop layer and the reaction resistant layer is removed, and a residual layer of unreacted material is then used as a mask for the formation of a device component. The lateral dimension of the residual layer can be substantially less than that achievable by optical lithographic techniques.
摘要:
Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line openings containing a bit line dielectric between the memory cells. The memory cell contains a charge storage layer and a first poly gate. The bit line opening extends into the semiconductor substrate. By containing the bit line dielectric in the bit line openings that extend into the semiconductor substrate, the memory device can improve the electrical isolation between memory cells, thereby preventing and/or mitigating TPD.
摘要:
A method for fabricating a memory device with a self-aligned trap layer and rounded active region corners is disclosed. In the present invention, an STI process is performed before any of the charge-trapping and top-level layers are formed. Immediately after the STI process, the sharp corners of the active regions are exposed. Because these sharp corners are exposed at this time, they are available to be rounded through any number of known rounding techniques. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, the charge-trapping structure and other layers can be formed by a self-aligned process.
摘要:
A method of forming a fin for a fin field effect transistor (FinFET) includes defining a trench in a layer of first material, where a width of an opening of the trench is substantially smaller than a thickness of the layer. The method includes growing a second material in the trench to form the fin and removing the layer of first material.
摘要:
The invention provides a method of small geometry gate formation on the surface of a high-K gate dielectric. The method provides for processing steps that include gate pattern trimming, gate stack etch, and removal of exposed regions of the high-K dielectric to be performed efficiently in a single etch chamber. As such, process complexity and processing costs are reduced while throughput and overall process efficiency is improved. The method includes fabricating a high-K gate dielectric etch stop dielectric layer on the surface of a silicon substrate to protect the silicon substrate from erosion during an etch step and to prove a gate dielectric. A polysilicon layer is fabricated above the high-K dielectric layer. An anti-reflective coating layer above the polysilicon layer, and a mask is fabricated above the anti-reflective coating layer to define a gate region and an erosion region. The sequence of etching steps discussed above are performed in-situ in an enclosed high density plasma etching chamber environment.
摘要:
A method for forming a fin in a semiconductor device that includes a substrate, an insulating layer formed on the substrate, and a conductive layer formed on the insulating layer, includes forming a carbon layer over the conductive layer and forming a mask over the carbon layer. The method further includes etching the mask and carbon layer to form at least one structure, where the structure has a first width, reducing the width of the carbon layer in the at least one structure to a second width, depositing an oxide layer to surround the at least one structure, removing a portion of the oxide layer and the mask, removing the carbon layer to form an opening in a remaining portion of the oxide layer for each of the at least one structure, filling the at least one opening with conductive material, and removing the remaining portion of the oxide layer and a portion of the conductive layer to form the fin.