摘要:
The present invention relates to compositions and methods involving biocompatible dendrimers. In particular, the present invention provides dendrimeric copolymers with poly(propyleneimine) (POPAM) interiors and poly(amidoamine) (PAMAM) exteriors for use in transfection and imaging applications.
摘要:
A gene transfection particle includes a polymer, a support particle conjugated with the dendritic polymer, and genetic material conjugated with the dendritic polymer. The gene transfection particles are highly efficient and are capable of delivering higher quantities of genetic materials to cells, with reduced cell damage. A gene transfection method involves bombarding cells with conjugates of polymers and genetic material, with or without a support particle.
摘要:
A water-soluble or water-dispersible fluorine-containing dendritic polymer surfactant having at least one terminal fluorocarbon moiety and at least one terminal anionic moiety, and which is suitable for use in preparing protective coating compositions is disclosed. The water-soluble or water-dispersible fluorine-containing dendritic polymer surfactants are represented by the general formula: ##STR1## where D represents a dendritic polymer, R.sub.F represents a fluorocarbon containing moiety, A.sup.- represents an anionic containing moiety, C.sup.+ represents a cation, T represents a terminal group of the dendritic polymer which has not been functionalized with a fluorocarbon or anionic moiety, n and m are at least each at least one, and the sum of n+m+q is the total number of terminal groups on the dendritic polymer. Also disclosed is a coating composition capable of forming a highly crosslinked, non-stick, protective coating. The coating composition includes a water-soluble or water-dispersible fluorine-containing dendritic polymer surfactant having at least one terminal fluorocarbon moiety and at least one terminal anionic moiety, an oxazoline crosslinking agent, and a water-based solvent.
摘要:
Dendritic polymer conjugates which are composed of at least one dendrimer in association with at least one unit of a carried material, where the carrier material can be a biological response modifier, have been prepared. The conjugate can also have a target director present, and when it is present then the carried material may be a bioactive agent. Preferred dendritic polymers are dense star polymers, which have been complexed with biological response modifiers. These conjugates and complexes have particularly advantageous properties due to their unique characteristics.
摘要:
Dense star polymers or dendrimers, modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, act as molecular nucleating agents in forming a polymer blend.
摘要:
Rod-shaped dendrimers having a plurality of dendritic branches emanating from an essentially linear core are prepared by first reacting a linear polyfunctional core compound such as a polyethyleneimine with a first dendritic branching reactant such as an ester of an unsaturated carboxylic acid, e.g., methyl acrylate, and then successively reacting the resulting product with a second dendritic branching reactant such as ethylenediamine and then with the first or another dendritic branching reactant.The rod-shaped dendrimers are useful in the production of molecular composites and as crystallinity modifiers for polymeric materials.
摘要:
Cyclic peptides, such as 1,4,8,11-tetraazacyclotetradecane-5,12-dione, that are useful chelation agents for metals are prepared by contacting an acrylic acid ester and a 1,2-alkylenediamine.
摘要:
Compounds represented by the formula ##STR1## and addition polymers thereof where m is an integer from 2 to about 10, x--is chlorine, hydroxy, carboxy or--AC--R).dbd.CH.sub.2--R is hydrogen or methyl, --R' is an ethylene or propylene group and--AC--R).dbd.CH.sub.2is one of ##STR2## These compounds and their addition polymers form complexes with alkali metal or alkaline earth metal salts and permit the concentration of aqueous solutions of said salts. For example, a compound of the formula ##STR3## is polymerized with an azobis(isobutyronitrile) catalyst to form addition polymers of the repeating unit ##STR4## When cross-linked, rendering it water-insoluble, such an addition polymer concentrates an aqueous solution of sodium chloride when contacted with same at about 0.degree. C.
摘要:
New esters are described having the formula ##STR1## wherein R is a chemical bond or an inert linking group such as alkylene, oxa-alkylene, thia-alkylene, arylene, alkenylene or the like, R' and R" are H or lower alkyl and n is 2-3. They are made by the reaction of a bis-oxazoline or -oxazine with an equimolar amount of an acrylic acid: ##STR2## The compounds (I) are acrylic esters and are polymerizable and copolymerizable by the same general techniques used with other acrylic esters, thus producing solid resins useful as molding and coating materials. The oxazoline and oxazine rings in such resins are reactive with carboxyl groups; hence, the resins can be mixed with carboxy-containing polymers to form mixtures that readily cure upon mmold heat treatment to form hard, water-resistant and solvent-resistant, infusible resins.
摘要:
In the present invention, an inorganic reactant is, or reactants are, localized with respect to a dendritic polymer by physical constraint within or by a non-covalent conjugation to the dendritic polymer. The localized inorganic reactant or reactants is/are subsequently transformed to form a reaction product which is immobilized with respect to the dendritic polymer. This immobilization occurs on a nanoscopic scale as a consequence of the combined effects of structural, chemical and physical changes without having covalent bonds between the product(s) and the dendritic container and results in new compositions of matter called dendritic nanocomposites. The resulting nanocomposite material can be used to produce revolutionary products such as water soluble elemental metals, with specific applications including magnetic resonance imaging, catalytic, magnetic, optical, photolytic and electroactive applications.