Abstract:
A label-free resonant waveguide grating biosensor imager system for measuring beat patterns and dynamic mass redistribution (DMR) signals of cultured cardiomyocytes in the absence and presence of a drug molecule. The disclosure also provides a method using the imager system for analyzing the beat patterns and the DMR signals of the cardiomyocytes to assess drug-induced cardiotoxicity.
Abstract:
The disclosure relates to methods of using dynamic mass redistribution data obtained from cancer cells cultured on waveguide grating biosensors in the presence of agonists and in the presence of chemotherapeutic agents, for predicting effective chemotherapies for the treatment of cancer.
Abstract:
A cell culture article includes a substrate having a polymer coating that is conducive to colony passaging of cells cultured on the coating. Example polymer coatings are formed from polygalacturonic acid (PGA), alginate, or combinations thereof. Cells cultured on the polymer coating can be separated from the substrate as a colony or layer of cells by exposing the polymer coating to (i) a chelating agent, (ii) a proteinase-free enzyme, or (iii) a chelating agent and a proteinase-free enzyme.
Abstract:
A cell culture article includes a substrate having a polymer coating that is conducive to colony passaging of cells cultured on the coating. Example polymer coatings are formed from polygalacturonic acid (PGA), alginate, or combinations thereof. Cells cultured on the polymer coating can be separated from the substrate as a colony or layer of cells by exposing the polymer coating to (i) a chelating agent, (ii) a proteinase-free enzyme, or (iii) a chelating agent and a proteinase-free enzyme.
Abstract:
A method for making a microfluidic device having one or more different patterned polymeric hydrogel nanostructure is provided. The method includes: providing a first substrate having a first patterned array of polymeric hydrogel nanostructures on a first interior surface and a peripheral surface portion; providing a second substrate having a second interior surface and a side wall with an end surface; and bonding the end surface of the second substrate to the peripheral surface portion of the first substrate such that the first and second interior surfaces define a hermetic cavity within the bonded first and second substrate. The microfluidic device can be designed to include a variety of different patterned array of polymeric hydrogel nanostructures depending on the desired application and properties for the device.
Abstract:
A microfluidic device includes a flow channel disposed in a glass-based substrate; and a cover bonded to the glass-based substrate and at least partially covering the flow channel, such that the cover has a thickness of at most 200 μm.
Abstract:
A method of making a microfluidic device (200, 201, 300) can include depositing a layer of photoresist onto a first substrate (210, 270, 310), selectively removing the photoresist to expose portions of the first substrate (210, 270, 310), etching the exposed portions of the first substrate (210, 270, 310) to form an array of nano-wells (240, 340), coating each nano-well (240, 340) with metal oxide, and coating the metal oxide on each nano-well (240, 340) with a first material to increase binding of DNA, proteins, and polynucleotides to the metal oxide. A layer of a second material can be deposited on interstitial areas between the nano-wells (240, 340) to inhibit binding of DNA, proteins, and polynucleotides to the interstitial areas. A second substrate (220, 320) can be bonded to the first substrate (210, 270, 310) to enclose the array of nano-wells (240, 340) in a cavity.
Abstract:
A patterned flow cell includes a substrate (100, 200) having a patterned array of metal oxide nano-patches (104, 202). Each of the metal oxide nano-patches (104, 202) has an organophosphate coating layer (106, 206) to increase the ability of the metal oxide (104, 204) to bind with DNA, proteins, or polynucleotides. A silane coating layer (108, 208) is deposited in the interstitial spaces on the substrate (100, 200) between the metal oxide nano-patches (104, 202) to prevent the binding of polynucleotides, DNA, or proteins in the interstitial spaces.
Abstract:
A method for manufacturing a microfluidic device (100) includes depositing a bonding layer (106) on a surface of a second glass layer (104a) of a glass substrate having a first glass layer (102) and the second glass layer (104a) fused to the first glass layer (102), such that a masked region of the surface is covered by the bonding layer, and an exposed region of the surface is uncovered by the bonding layer; removing a portion of the second glass layer corresponding to the exposed region of the surface to form a flow channel (112) in the glass substrate; and bonding a cover (108) to the glass substrate with the bonding layer (106).
Abstract:
A cell culture article includes a substrate having a polymer coating that is conducive to colony passaging of cells cultured on the coating. Example polymer coatings are formed from polygalacturonic acid (PGA), alginate, or combinations thereof. Cells cultured on the polymer coating can be separated from the substrate as a colony or layer of cells by exposing the polymer coating to (i) a chelating agent, (ii) a proteinase-free enzyme, or (iii) a chelating agent and a proteinase-free enzyme.