Abstract:
A wafer handling apparatus and method includes a wafer carrier station for supporting a wafer carrier, such as an enclosed pod, that holds one or more wafers. A grounded interface panel is provided between the carrier station and a clean testing or processing environment. A z-movement mechanism moves the carrier station and the wafer carrier in a z-direction. A door opening mechanism removes a door from said carrier through a door opening in the interface panel. A handler mechanism includes a wafer holding device, such as a flat end effector, that moves into the wafer carrier at a separate access opening to load or unload a wafer to or from the wafer carrier. Wafer carriers holding different amounts of wafers can be used with no major structural changes to the apparatus.
Abstract:
A method and apparatus for mapping the edge and other characteristics of a wafer. A method for mapping the edge of a wafer includes steps of providing a sensor device over a surface of a wafer on a testing chuck. A beam of electromagnetic energy emitted by the sensor device is reflected from the surface of the wafer and its intensity is measured by the sensor device. The sensor device is focussed and is then positioned at the edge of the wafer by measuring the intensity of the reflected beam as the sensor device is moved. A changed intensity signifies that the sensor device is located at the edge of the wafer. The wafer is incrementally rotated and the intensity of the reflected beam is measured at multiple locations on the edge of the wafer to provide datapoints used in the edge mapping. The height of the wafer is mapped by moving the sensor device in a z direction perpendicular to the surface of the wafer. A focal distance is found where the reflected beam is at a maximum intensity. Multiple focal distances taken from different locations on the wafer are compared to map the height of the wafer. The reflectivity of the wafer is also detected at the focal distance.
Abstract:
A method and apparatus for handling wafers. A wafer pick moves along a horizontal x-axis to unload a wafer from a cassette and position the wafer over a chuck. The chuck moves upwardly along a z-axis perpendicular to the surface of the wafer and lifts the wafer off the pick. The pick retracts through a slot in the chuck and a test probe moves along the x-axis to position itself over the wafer and chuck with reference to a calculated wafer center. The chuck then moves upwardly to engage the surface of the wafer with the probe. Wafer characteristics are tested at several test points located on a circle on the surface of the wafer by repeatedly lowering the chuck, rotating the chuck by a small amount, and raising the chuck to engage the wafer with the probe. The probe is then positioned to test another circle of points.
Abstract:
A method and apparatus for finding wafer index marks and centers. A wafer having a flat or notch along its edge is placed on a rotatable platform so that a portion of the wafer's edge is positioned within a sensor assembly. The wafer is rotated, and the sensor reads the distance from the center of rotation to the edge of the wafer. This distance is measured at several angles of the wafer and the data is stored in a digital computer as a series of datapoints including an angle and a distance. A computer-implemented process calculates various geometries concerning the wafer including the location of the index mark and the center of the wafer.
Abstract:
A wafer processing system includes an autoloader mounted within a load lock for providing batch, cassette-to-cassette automatic wafer transfer between the semiconductor processing chamber and cassette load and unload positions within the load lock. The system provides rapid, contamination-free loading and unloading of semiconductor wafers.
Abstract:
A method for measuring surface topography characterized by making multiple scans of the surface with a laser scanning unit and utilizing the multiple scans to create representations of the surface's topography. The surface topography data can also be used to calculate the compressive or tensile stress caused by a thin film applied to the surface of a semiconductor wafer. The apparatus of the present invention scans a laser beam across a surface in an x direction, and detects displacements of a reflected portion of the laser beam in a z direction. A pair of photodetectors are used to translate z direction displacements of the reflected beam into analog signals which are digitized and input into a microcomputer for analysis. The multiple scans of the surface are preferably accomplished by placing the workpiece on a pedestal which can be rotated to various angular positions.
Abstract:
A system for measuring topological features, such curvatures and profiles, of surfaces such as semiconductor wafer surfaces. The system includes a) laser means and lens means for directing a beam of weakly-convergent light for incidence on a surface which is to be measured, b) photodetector means for detecting the position of the laser light beam reflected from the surface, c) first translation means for providing relative movement between the laser means and the surface in a direction which is normal to the direction of the incident beam, so that the incident beam is caused to scan across the surface, e) position sensing means connected to the photodetector means for detecting the location on the photodetector means at which the reflected beam is incident.
Abstract:
A wafer processing system includes an autoloader mounted within a load lock for providing batch, cassette-to-cassette automatic wafer transfer between the semiconductor processing chamber and cassette load and unload positions within the load lock. The system provides rapid, contamination-free loading and unloading of semiconductor wafers.
Abstract:
A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
Abstract:
A system for measuring the curvature of a surface includes a laser for emitting a beam of light to be incident upon the surface; a photodetector for detecting light reflected by the surface; a first stage for selectively moving the surface in a direction normal to the direction of the incident beam; a second stage for selectively moving the photodetector in a direction normal to the reflected beam; a sensor connected to the photodetector for detecting the displacement of the reflected beam relative to the photodetector.