摘要:
An apparatus in one example comprises a differential amplifier and a differential mixer. The differential amplifier is configured to receive a multi-octave differential input signal and output an amplified multi-octave differential output signal. The differential amplifier is also configured to substantially reduce second order harmonic distortion of the amplified multi-octave differential output signal through common mode rejection. The differential mixer configured to multiply the amplified multi-octave differential output signal with a local oscillator input signal and output an up-converted sub-octave differential output signal. The multi-octave differential input signal and the up-converted sub-octave differential output signal comprise a substantially same bandwidth.
摘要:
A three dimensional (3D) microwave monolithic integrated circuit (MMIC) multi-push voltage controlled oscillator (VCO) and methods of making the same is provided. The 3D MMIC multi-push oscillator includes a plurality of matching frequency oscillators coupled to a phasing ring in substantially equidistantly spaced apart locations. A combined VCO output signal is provided at a central output connection point of the phasing ring. The central output connection point resides on a first plane. An output conductor transition has a first end coupled to the central output connection point and a second end provided as an output to the quad-push VCO. The output conductor transition extends transverse to the first plane and terminates at a second plane separated from the first plane. The multi-push oscillator can be a push-push, quad-push or N-push type VCO based on a particular implementation.
摘要:
A power amplifier circuit (40) that includes an error correction loop (44) having a lower IP3 error correction amplifier (54) than a main power amplifier (46) in a main signal path (48). A first attenuator (52) in the error loop (44) attenuates the RF signal, and provides more attenuation of intermodulation products in the RF signal and about the same attenuation for a main frequency of the RF signal for each dB of attenuation. The error amplifier (54) amplifies the attenuated RF signal from the first attenuator (52). A second attenuator (56) in the error loop (44) attenuates the RF signal from the error correction amplifier (54). A phase shifter (58) phase shifts the RF signal from the second attenuator (56). A coupler (50) couples the amplified RF signal and the phase shifted RF signal to cancel out intermodulation products in the amplified RF signal.
摘要:
A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels. In one embodiment, the frequency down-conversion is performed in a single down-conversion process, and the ADC (20) employs delta-sigma processing to provide digital conversion over the complete frequency band. In an alternate embodiment, the frequency down-conversion is performed in a double down-conversion process so that a less complex ADC (62) can be used.
摘要:
A frequency scalable, low self-generated noise frequency source generates coherent or mostly-coherent local oscillator signals and includes a common reference, a coherent set of high frequency references and specific local oscillators which may be non-coherent for each specific output frequency. Delay lines may be included in the paths to ensure time delay alignment. The use of these elements with this modular design allows the generation of multiple coherent local oscillators via replication of the modular design elements.
摘要:
Fast switching and fast settling is achieved in a phase locked loop (“PLL”) containing a bandwidth switched active loop filter (8) by feeding the phase error signal of the phase detector (1) of the PLL to the non-inverting input of the amplifier (7) within the loop filter and having the electronic switch (17) control the loop filter bandwidth through changing the resistance (9, 11) to ground at the inverting input of the amplifier between a high and low value associated respectively with broad bandwidth and narrow bandwidth to the loop filter. Switching is possible in as little as one microsecond, and is accompanied by fast settling of the loop with minimal generation of phase/frequency perturbation. The foregoing PLL is of particular benefit in fast switching frequency synthesizers, such as used in frequency hopping frequency synthesizers of frequency and time division multiplexing systems.
摘要:
A nonlinear transmission-line waveform generator for generating a comb of frequencies and relatively short duration pulses, for example, in the range of picoseconds and tens of picoseconds, that are adapted to being utilized with ultra wideband radios in order to improve the bandwidth of such radios by an order of magnitude, for example, up to tens and even hundreds of GHz. In particular, the nonlinear transmission line waveform generator in accordance with the present invention consists of a microstrip or coplanar waveguide line. In accordance with an important aspect of the invention, the &Dgr;C/&Dgr;V characteristic of the nonlinear transmission line is matched to the frequency and amplitude of the input sinusoidal waveform. By matching the &Dgr;C/&Dgr;V characteristics of the nonlinear transmission line to the input sinusoidal waveform, the output of the nonlinear transmission line produces a comb of frequencies that are multiples of the input sinusoidal waveform frequency, making it suitable as a harmonic generator. The nonlinear transmission line can also be used to generate relatively short duration pulses by disposing a shorting stub at the output. The shorting stub causes the waveform to be reflected 180° out of phase so that it cancels the trailing edge of the original output from the nonlinear transmission lines to form a short duration pulse in the picosecond range. The length of the stub determines the width of the resultant output pulse.
摘要:
A receiver (10) for a wireless telecommunications system that provides relatively wideband signal processing of received signals without increased signal distortion so that multiple received signals can be simultaneously processed. The receiver (10) includes a specialized LNA (16), frequency down-converter (18) and ADC (20) to perform the wideband signal processing while maintaining receiver performance. The frequency down-converter (18) employs a suitable mixer (28), BPA (32), attenuator (34), and transformer (36) that are tuned to provide the desired frequency down-conversion and amplitude control over the desired wideband. The down-converter devices are selected depending on the particular performance criteria of the ADC (20). A specialized digital channelizer (22) is included in the receiver (10) that receives the digital signal from the ADC (20), and separates the signals into the multiple channels. In one embodiment, the frequency down-conversion is performed in a single down-conversion process, and the ADC (20) employs delta-sigma processing to provide digital conversion over the complete frequency band. In an alternate embodiment, the frequency down-conversion is performed in a double down-conversion process so that a less complex ADC (62) can be used.
摘要:
A variable delay line detector (34, 48, 66)includes a power splitter (36, 50, 68), a mixer (44, 62, 72) and a variable delay line (42,52, 70). Various devices are suitable for the variable delay line (42, 52, 70), such as a non-linear transmission line (NLTL). By providing a variable delay line, the variable delay line detector (34, 48, 66) is adapted to be programmed in real time thus making it suitable in applications where the phase and or frequency of the input signal varies. As such, the variable delay line detector (34, 48, 66) may be used in applications heretofore unknown, such &a an inexpensive demodulator in a frequency hopped spread spectrum system.
摘要:
A frequency modulation-based optical analog-to-digital converter utilizes a downward-folding, successive approximation approach. A series of stages is utilized to generate bits in the digital signal. In each stage, complementary low and high bandpass filters collectively cover a bandpass frequency range from a low frequency to a high frequency. The high frequency filtered signal from the high bandpass filter is observed to obtain a bit in the digital word. By performing the folding operations in the frequency domain, the converter avoids the difficult task of optical power subtraction, relying instead on frequency down-conversions. The high frequency filtered signal passed by the high bandpass filter is then downconverted and added to the low pass filter signal to generate a modulated signal for the next stage.