摘要:
Systems and methods for ablating body tissue use an electrode for contacting tissue to form a tissue-electrode interface. The electrode is coupled to a source of ablation energy for transmitting ablation energy at a prescribed ablation power level into tissue to form, over a prescribed ablation time period, a therapeutic result. The therapeutic result includes a lesion that extends beneath the tissue-electrode interface to a boundary depth between viable and nonviable tissue and a maximum tissue temperature developed within the lesion between the tissue-electrode interface and the boundary depth. The systems and methods include an element to cool the electrode. An input element inputs a desired therapeutic result including at least a targeted lesion boundary depth. The systems and methods employ a processing element that retains a function correlating an observed relationship among lesion boundary depth, ablation power level, ablation time, actual or predicted sub-surface tissue temperature, and electrode temperature. The processing element compares the desired therapeutic result to the function. The processing element selects an operating condition based upon the comparison to achieve the desired therapeutic result without exceeding a prescribed actual or predicted sub-surface tissue temperature, at least in part by cooling the electrode to control electrode temperature while the electrode transmits ablation energy.
摘要:
Systems and associated methods for ablating body tissue employ an electrode for contacting tissue to form a tissue-electrode interface. The electrode is adapted to be connected to a source of ablation energy to conduct ablation energy for transmission by the electrode into tissue at the tissue-electrode interface. The systems and methods also include an element to cool the electrode. The systems and methods hold a tissue temperature sensing element in a carrier in thermal conductive contact with tissue beneath the tissue-electrode interface. The systems and methods include a controller that is coupled to the tissue temperature sensing element to control either the supply of ablation energy, or the rate at which the electrode is cooled, or both based, at least in part, upon temperature sensed by the temperature sensing element.
摘要:
Enhanced electrical connections for electrodes are provided. In one implementation, an electrode body comprises a first electrically nonconductive layer and a second electrically nonconductive layer overlying at least a portion of the first layer. An intermediate region is formed between the first and second layers. An electrically conductive pathway extends within the intermediate region. An formed opening extends to the intermediate region, exposing a part of the electrically conductive pathway. An electrically conductive material is deposited on the second layer so that a part of the electrically conductive material passes through the opening to establish electrical contact between the electrically conductive material and the electrically conductive pathway.
摘要:
An apparatus for ablating body tissue has an electrode for contacting tissue to transmit ablation energy. A tissue temperature sensing element is held in a thermally conducting carrier on the electrode. The carrier holds the tissue temperature sensing element in thermal conductive contact with tissue, while keeping the temperature sensing element in isolation from thermal conductive contact with the electrode. The carrier has prescribed thermal conductive characteristics that significantly improve the sensitivity of the temperature sensing element to tissue temperature and not the temperature of the electrode.
摘要:
Systems and methods ablate body tissue using an electrode for contacting tissue at a tissue-electrode interface to transmit ablation energy at a determinable power level. The systems and methods include an element to remove heat from the electrode at a determinable rate. The systems and methods employ a processing element to derive a prediction of the maximum tissue temperature condition occurring beneath the tissue-electrode interface. The processing element controls the power level of ablation energy transmitted by the electrode, or the rate at which the electrode is cooled, or both, based, at least in part, upon the maximum tissue temperature prediction.
摘要:
Devices for insertion into an atrial appendage of stasis reducing components such as mesh members, chemical bonding agents or expandable anchors are disclosed.
摘要:
A device for creating the lesions in body tissue includes a support element having an electromagnetic energy emitting region. When caused to emit electromagnetic energy, the region creates a single continuous lesion that is long and thin, having a length that is substantially greater than its width.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
Devices for insertion into an atrial appendage of stasis reducing components such as mesh members, chemical bonding agents or expandable anchors are disclosed.
摘要:
A coil electrode for use in an electrophysiology probe includes a first material having a relatively high radiopacity and a second material having a relatively high resiliency. This combination provides the necessary levels of durability, resiliency and radiopacity. An electrophysiological probe includes a support structure, at least one first electrode defining a first radiopacity supported on the support structure and at least one second electrode defining a second radiopacity supported on the support structure, the second radiopacity being greater than the first radiopacity. When viewed under a fluoroscope, the pattern of electrodes of varying radiopacities allows the physician to distinguish between individual electrodes.