摘要:
Embodiments of the present disclosure relate to techniques for controlling the temperature of light sources within physiological sensors in order to regulate the wavelengths emitted by the light sources. The sensors may include a temperature control element that is designed to provide heating and/or cooling to the light sources. The sensors also may include a temperature sensor designed to detect the temperature of the light sources. Based on the detected temperature, a controller can vary the amount of heating and/or cooling provided by the temperature control element to maintain the temperature of the light sources at a desired temperature or within a desired temperature range.
摘要:
Various embodiments of a tracheal tube capable of suctioning accumulated mucus secretions from the airway of intubated patients are provided. Disclosed embodiments include a variety of endrotracheal tubes with integral suction lumens terminating in ports optimally located at the distal end of the endrotracheal tubes between a Murphy's Eye and a cuff. During intubation, the foregoing features, among others, of the tracheal tube may have the effect of preventing bacterial colonization of the respiratory airway and the subsequent development of ventilator associated pneumonia (VAP) in the lungs.
摘要:
A physiological monitoring system may use photoacoustic sensing to determine physiological information of a subject. The photoacoustic monitoring system may use a light source, such as a modulated continuous wave laser diode, to provide a frequency modulated photonic signal (e.g., a chirp signal) to the subject. An acoustic detector may be used to detect an acoustic pressure signal from the subject. The acoustic pressure signal may include two components corresponding to two wavelengths of light in the photonic signal. A signal ratio may be calculated based on the two components. The photoacoustic monitoring system may use the signal ratio to calculate one or more absorption coefficients. The photoacoustic monitoring system may use the one or more absorption coefficients to determine additional physiological information such as hemoglobin concentration, blood oxygen saturation, and temperature.
摘要:
An oral cavity mounted photoacoustic sensing unit is disclosed. The sensing unit may include a light source, a photoacoustic detector, and a support assembly. The support assembly may be configured such that the light source and the photoacoustic detector are fixably located relative to the buccal or sublingual tissue of a subject.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof. For example, a thermo-dilution indicator and/or a hemo-dilution indicator may be used to determine one or more hemodynamic parameters. In a further example, an isotonic indicator and a hypertonic indicator may be used to determine one or more hemodynamic parameters of the subject.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof, using one or more sensor units. The system may use multiple light sources and/or detectors to diagnose and/or improve signal to noise ratio, distinguish between arterial and venous signals, prevent under-sampling, and separate the effects of hemo-dilution and thermo-dilution.
摘要:
Embodiments of the present disclosure relate to a system and method for determining a physiologic parameter of a patient. Specifically, embodiments provided herein include methods and systems for non-invasive determination of blood pressure. Information from a photoplethysmography sensor may be used to determine a systolic pressure, which in turn may be used to control a deflation pattern of a blood pressure cuff.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof. For example, a thermo-dilution indicator and/or a hemo-dilution indicator may be used to determine one or more hemodynamic parameters. In a further example, an isotonic indicator and a hypertonic indicator may be used to determine one or more hemodynamic parameters of the subject.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof, using one or more sensor units. The system may use multiple light sources and/or detectors to diagnose and/or improve signal to noise ratio, distinguish between arterial and venous signals, prevent under-sampling, and separate the effects of hemo-dilution and thermo-dilution.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof, using one or more sensor units. The system may use multiple light sources and/or detectors to diagnose and/or improve signal to noise ratio, distinguish between arterial and venous signals, prevent under-sampling, and separate the effects of hemo-dilution and thermo-dilution.