Abstract:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer and a light emitting part. The first semiconductor layer includes an n-type semiconductor layer. The second semiconductor layer includes a p-type semiconductor layer. The light emitting part is provided between the first semiconductor layer and the second semiconductor layer, and includes a plurality of barrier layers and a well layer provided between the plurality of barrier layers. The first semiconductor layer has a first irregularity and a second irregularity. The first irregularity is provided on a first major surface of the first semiconductor layer on an opposite side to the light emitting part. The second irregularity is provided on a bottom face and a top face of the first irregularity, and has a level difference smaller than a level difference between the bottom face and the top face.
Abstract:
A light emitting device according to one embodiment includes a board; a light emitting element mounted on the board, emitting light having a wavelength of 250 nm to 500 nm; a red fluorescent layer formed on the element, including a red phosphor expressed by equation (1), having a semicircular shape with a diameter r; (M1−x1Eux1)aSibAlOcNd (1) (In the equation (1), M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Al (Aliminum), rare-earth elements, and IVB group elements),an intermediate layer formed on the red fluorescent layer, being made of transparent resin, having a semicircular shape with a diameter D; and a green fluorescent layer formed on the intermediate layer, including a green phosphor, having a semicircular shape. A relationship between the diameter r and the diameter D satisfies equation (2): 2.0r (μm)≧D(r+1000) (μm). (2)
Abstract:
A light emitting device according to one embodiment includes a light emitting element that emits light having a wavelength of 250 nm to 500 nm; plural red fluorescent layers that are formed above the light emitting element to include a red fluorescent material, the red fluorescent layers being disposed at predetermined intervals; and plural green fluorescent layers that are formed above the light emitting element to include a green fluorescent material, a distance between the light emitting element and the green fluorescent layers being larger than a distance between the light emitting element and the red fluorescent layers.
Abstract:
Embodiments describe a semiconductor laser device driven at low voltage and which is excellent for cleavage and a method of manufacturing the device. In one embodiment, the semiconductor laser device includes a GaN substrate; a semiconductor layer formed on the GaN substrate; a ridge formed in the semiconductor layer; a recess formed in the bottom surface of the GaN substrate. The recess has a depth less than the thickness of the GaN substrate. The device also has a notch deeper than the recess formed on a side surface of the GaN substrate and separated from the recess. In the semiconductor laser device, the total thickness of the GaN substrate and the semiconductor layer is 100 μm or more, and the distance between the top surface of the ridge and the bottom surface of the recess is 5 μm or more and 50 μm or less.