摘要:
In various embodiments, a surgical catheter is provided. The catheter may comprise one or more hydrophobic barrier layers made from an ethylene-pertfluoroethylenepropylene (“EFEP”) copolymer. Additionally, the catheter may comprise another polymer layer made from a reactive polar polymer. In at least one embodiment, the reactive polar polymer may be a modified-poly(ether block amide) (“PEBA”) copolymer, such as an amine-terminated PEBA. Moreover, in various embodiments, a composition is provided that may comprise a reactive polar polymer bonded to an EFEP copolymer.
摘要:
An ablation catheter is provided for ablating internal tissue of a patient. The catheter includes a distal end that is adapted to be inserted into a body cavity relative to a desired location therein (e.g., within the heart). An ablation electrode is connected relative to the distal end of the catheter for providing ablation energy to patient tissue. A heat sink is provided that is in thermal contact with the ablation electrode. The heat sink, in addition to being in thermal contact with the ablation electrode, is electrically isolated from the ablation electrode. This allows the heat sink to conduct heat away from the ablation electrode without dissipating electrical energy from the electrode. In this regard, the heat sink may prevent build-up of excess heat within the electrode that may result in blood coagulation and/or tissue charring.
摘要:
The present invention is a method of manufacturing a flexible tubular body for catheter, sheath or similar medical device. The method comprises pre-extruding an inner layer of the body from a thermoplastic polymer and then pulling the inner layer over a mandrel and tightening the layer down. If wire lumens were not integrally formed in the inner layer when pre-extruded, then two polymer spaghetti tubes, each with wire lumens, are laid 180 degrees apart axially along the outer surface of the inner layer. Deflection wires are then fed into the wire lumens. A cylindrical wire braid is woven or pulled over the inner layer (and the spaghetti tubes, as the case may be) and tightened down. The aforementioned components are then encased in an outer polymer layer. A heat-shrinkable tube is then placed over the outer layer. A pressurized fluid is injected into each wire lumen to maintain the internal diameter of each wire lumen at a diameter that is greater than the diameter of the deflection wire received in each wire lumen. Heat is then applied to the body and heat-shrinkable tube to cause the layers to laminate together. Once the newly laminated body has sufficiently cooled, the heat-shrinkable tube is removed from the body.
摘要:
A hemostasis cannula unit including a valve housing, a cap, and a hemostasis valve, wherein the hemostasis valve includes a proximal valve gasket and a distal valve gasket compressed against the valve gasket by the valve housing, wherein the proximal valve gasket is the same shape as the distal valve gasket.
摘要:
In various embodiments, a surgical catheter is provided. The catheter may comprise one or more hydrophobic barrier layers made from an ethylene-pertfluoroethylenepropylene (“EFEP”) copolymer. Additionally, the catheter may comprise another polymer layer made from a reactive polar polymer. In at least one embodiment, the reactive polar polymer may be a modified-poly(ether block amide) (“PEBA”) copolymer, such as an amine-terminated PEBA. Moreover, in various embodiments, a composition is provided that may comprise a reactive polar polymer bonded to an EFEP copolymer.
摘要:
A hemostasis cannula unit including a valve housing, a cap, and a hemostasis valve, wherein the hemostasis valve includes a valve gasket and a valve membrane compressed against the valve gasket by the valve housing, wherein the valve gasket is thicker than the valve membrane.