Abstract:
A laser apparatus that can reliably prevent the formation of condensation is disclosed. In the laser apparatus, the temperature of cooling water supplied into the interior of the laser apparatus is controlled within a first predetermined temperature range during laser oscillation, while at the same time, continuously performing dehumidification so that the relation (dew point of air inside laser apparatus)+(first predetermined temperature difference)≦(cooling water temperature) is maintained. The dew point of the air inside the laser apparatus can be obtained by a computing unit from the humidity and temperature of the air.
Abstract:
A machine learning apparatus that learns laser machining condition data of a laser machining system includes: a state amount observation unit that observes a state amount of the laser machining system; an operation result acquisition unit that acquires a machined result of the laser machining system; a learning unit that receives an output from the state amount observation unit and an output from the operation result acquisition unit, and learns the laser machining condition data in association with the state amount and the machined result of the laser machining system; and a decision-making unit that outputs laser machining condition data by referring to the laser machining condition data learned by the learning unit.
Abstract:
A laser apparatus that can reliably prevent the formation of condensation is disclosed. In the laser apparatus, the temperature of cooling water supplied into the interior of the laser apparatus is controlled within a first predetermined temperature range during laser oscillation, while at the same time, continuously performing dehumidification so that the relation (dew point of air inside laser apparatus)+(first predetermined temperature difference)≦(cooling water temperature) is maintained. The dew point of the air inside the laser apparatus can be obtained by a computing unit from the humidity and temperature of the air.
Abstract:
A laser apparatus includes laser diode module groups (LDMGs) and power supply units and provides a laser light source by collecting laser beam from the LDMGs, and comprises: a driving current supply circuit network for injecting the driving currents into the respective LDMGs, independently; a control unit which controls the driving currents independently; a first recording unit in which are recorded data representing a relationship between the driving current and optical output power, and data representing a relationship between the driving current and drive voltage; and a first calculating unit which calculates the driving currents to be allocated to the LDMGs so as to achieve maximum electrical to optical conversion efficiency, wherein the control unit allocates the driving currents to the LDMGs in accordance with the results calculated by the first calculating unit so that the LDMGs as a whole can achieve maximum electrical to optical conversion efficiency under conditions.
Abstract:
The laser apparatus includes a laser oscillation part including a water-cooled plate, an air cooling machine including a radiator, a dehumidifier including a water-cooled plate, and a cooling water supply device including a cooling water pipe through which a cooling water is supplied. The air cooling machine and the dehumidifier are arranged in a housing. The cooling water pipe is branched so that the water-cooled plate in the laser oscillation part, the radiator, and the water-cooled plate in the dehumidifier are connected in parallel. The cooling water supply device supplies a common cooling water of the same temperature to the water-cooled plate in the laser oscillation part, the radiator, and the water-cooled plate in the dehumidifier.
Abstract:
The laser device of the present invention includes a first temperature sensor which is provided in a housing to detect the temperature of the portion to be cooled, a second temperature sensor and a humidity sensor which are provided outside the housing to respectively detect the temperature and humidity of the air outside the housing. The laser device further includes a judgment unit which judges the possibility of condensation forming on the portion to be cooled by the air outside the housing based on each of the detected results of the first temperature sensor, the second temperature sensor and the humidity sensor, and a notification unit which gives notification of the judgment result of the judgment unit, outside the housing.
Abstract:
An optical fiber for a fiber laser includes a core to which a rare-earth element is added, a first cladding formed around the core; and a second cladding formed around the first cladding, and excitation light is guided from at least one end of the first cladding to excite the rare-earth element to output a laser oscillation light. An addition concentration of the rare-earth element to the core is different in a longitudinal direction of the optical fiber for a fiber laser, and a core diameter and a numerical aperture of the optical fiber for a fiber laser are constant in the longitudinal direction of the optical fiber for a fiber laser.
Abstract:
A laser apparatus calculates a temperature of a temperature increase portion that is raised in temperature by reflection light, and determines and outputs an emergency optical output command with the aim of ensuring that the calculated temperature does not exceed a first predetermined temperature, which is set at a lower temperature than an upper limit heat resistance temperature, and if necessary, controlling the temperature to or below a second predetermined temperature set at a lower temperature than the first predetermined temperature. When the emergency optical output command is to be output, a control unit switches an optical output command output thereby to the emergency optical output command and outputs the emergency optical output command.
Abstract:
A fiber selector includes: a plurality of first reflecting members corresponding to a plurality of focusing optical systems which focus a laser beam from a collimating optical system, and equipped with a reflecting surface capable of reflecting the laser beam towards the focusing optical system; a rotary motor that rotationally moves the first reflecting member between a first position at which the laser beam reflects and a second position which does not block the laser beam, in which the fiber selector rotationally moves the plurality of first reflecting members between the first position and second position so as to selectively switch the propagating direction of the laser beam to any of the plurality of focusing optical systems, in which the reflecting surface of the first reflecting member is a plane perpendicular to the rotation axis of the shaft to which this first reflecting member is fixed, and is arranged so as to face the direction of the rotary motor that causes the shaft to which this first reflecting member is fixed to rotate.
Abstract:
A fiber laser apparatus includes a fiber laser oscillator that performs laser oscillation with laser light from at least one laser diode module, and includes a loop-shaped optical fiber formed with: a combiner in which at least two input side optical fibers are connected to one output side optical fiber that includes one output end; and an optical fiber for connection of both ends in which the output end of the output side optical fiber is connected to the input end of any one of the input side optical fibers, the optical fiber for connection of both ends including a light leakage means formed such that at least one of values among a numerical aperture, a core diameter and a mode field diameter of the optical fiber for connection of both ends is gradually reduced from a side which is connected to the output end toward a side which is connected to the input end.