Abstract:
A device and method for three-dimensional (3-D) imaging using a defocusing technique is disclosed. The device comprises a lens, a central aperture located along an optical axis for projecting an entire image of a target object, at least one defocusing aperture located off of the optical axis, a sensor operable for capturing electromagnetic radiation transmitted from an object through the lens and the central aperture and the at least one defocusing aperture, and a processor communicatively connected with the sensor for processing the sensor information and producing a 3-D image of the object. Different optical filters can be used for the central aperture and the defocusing apertures respectively, whereby a background image produced by the central aperture can be easily distinguished from defocused images produced by the defocusing apertures.
Abstract:
Described herein are systems, devices, and methods for the delivery of substances to, or the sampling of substances from, a patient using a portable and preferably implantable device. The substances introduced to and/or taken from the patient are preferably fluidic and are driven by a miniature pump, such as a microimpedance pump. A number of design variations are explicitly and implicitly described, such as the use of multiple pumps and multiple reservoirs for containing medicaments. Methods of manufacture of these systems and devices are also described, for instance, using molding, micromachining, or lithographic processes.
Abstract:
Systems, devices, and methods are provided for drug-eluting angioplasty balloons. An underlying balloon core member is protected by a core-screen from mechanical and flow shear forces during delivery. Inflation of the balloon opens the screen and pores in the screen permitting drug transfer and absorption. Upon deflation, the screen can be compressed and withdrawn with the balloon.
Abstract:
A method of fabricating a graphene oxide material in which oxidation is confined within the graphene layer and that possesses a desired band gap is provided. The method allows specific band gap values to be developed. Additionally, the use of masks is consistent with the method, so intricate configurations can be achieved. The resulting graphene oxide material is thus completely customizable and can be adapted to a plethora of useful engineering applications.
Abstract:
A system configured to be at least partially implanted along an aorta includes an inelastic, static member and a pinching member. The pinching member is configured to receive an activation signal at an activation rate and in response to the activation signal, repeatedly compress the aorta at the second location at the activation rate to pump fluid within the aorta in a desired pumping direction. The system is configured to selectively control wave reflections in order to achieve both improved wave dynamics to reduce cardiac load and increased (or at least non-diminished) blood flow to targeted organs within the cardiovascular system.
Abstract:
Disclosed are example embodiments of methods and systems for inducing drug to thoroughly mix in a patient's vitreous humor. One of the systems includes: a heat transfer pad that transfer heat to or from the eyeball; and a control module electronically coupled to the heat transfer pad for controlling one or more heat transfer elements disposed thereon.
Abstract:
A non-invasive and convenient method and apparatus for approximation of left ventricular end diastolic pressure (LVEDP) can be used in both hospital/clinic environments and nursing home or home environments. The method and apparatus use non-invasive sensors and a new “cardiac triangle” computational method to obtain an approximation of LVEDP. The computational method uses hemodynamic and electrocardiogram (ECG) waveforms as input, which can be collected by a portable device or devices.
Abstract:
A non-invasive and convenient method and apparatus for approximation of left ventricular end diastolic pressure (LVEDP) can be used in both hospital/clinic environments and nursing home or home environments. The method and apparatus use non-invasive sensors and a new “cardiac triangle” computational method to obtain an approximation of LVEDP. The computational method uses hemodynamic and electrocardiogram (ECG) waveforms as input, which can be collected by a portable device or devices.
Abstract:
In some embodiments, a multi-modal robot can be capable of aerial mobility and ground mobility, and can switch between configuration. The multi-modal robot can include a chassis, and a leg attached to the chassis. The leg can include a frontal hip joint. The frontal hip joint can rotate around a frontal hip axis of rotation. The frontal hip axis of rotation can be parallel to a longitudinal axis of the chassis. The leg can further include a sagittal hip joint, wherein the sagittal hip joint is coupled to the first distal end of a first link. The sagittal hip joint can rotate around a sagittal hip axis of rotation. The leg can include a wheel. The wheel can be configured to rotate around a wheel axis of rotation. The leg can further include a propeller. The propeller can be co-axial with the wheel.
Abstract:
A system and method for improving the flight control and efficiency of an aerial vehicle. Many embodiments are directed to a rotor-shroud assembly system where a plurality of rotor blades are connected to the internal side of a shroud and are set up to pivot through the use of a pitching mechanism. The entire assembly is configured to rotate when attached to a motor.