Abstract:
An object of the present invention is to provide a composition for forming a thermally conductive material, from which a thermally conductive material having excellent thermally conductive properties can be obtained. In addition, another object of the present invention is to provide a thermally conductive material formed of the composition for forming a thermally conductive material, a thermally conductive sheet, and a device with a thermally conductive layer. A composition for forming a thermally conductive material of the present invention includes an epoxy compound, an inorganic substance, and a compound X containing one or more functional groups selected from the group consisting of an alkenyl group, an acrylate group, a methacrylate group, a silyl group, an acid anhydride group, a cyanate ester group, an amino group, a thiol group, and a carboxylic acid group, or having a polyamic acid structure, in which a content of the inorganic substance is 10% by mass or more with respect to a total solid content of the composition, and a content of the compound X is 10% by mass or more with respect to the total solid content of the composition.
Abstract:
A side chain type polymer liquid crystalline compound with which a light absorption anisotropic film having a high alignment degree can be formed, which includes a liquid crystalline composition, a light absorption anisotropic film which is formed of the liquid crystalline composition, a laminate, and an image display device. A liquid crystalline composition contains a side chain type polymer liquid crystalline compound and a dichroic substance, the side chain type polymer liquid crystalline compound is a copolymer having repeating units 1 and 2, the repeating unit 1 has a mesogenic group and an electron-withdrawing group having a Hammett's substituent constant σp of greater than 0 at a terminal of the mesogenic group, and the repeating unit 2 has a mesogenic group and a group having a Hammett's substituent constant σp of 0 or less at a terminal of the mesogenic group.
Abstract:
An object of the invention is to provide a polymer liquid crystal compound with which a light absorption anisotropic film having a high alignment degree can be formed, a liquid crystalline composition, a light absorption anisotropic film which is formed of the liquid crystalline composition, a laminate, and an image display device. A liquid crystalline composition according to an embodiment of the invention includes a polymer liquid crystal compound which contains a repeating unit represented by Formula (1) and a dichroic substance. In Formula (1), a difference between a log P value of P1, L1, and SP1 and a log P value of M1 is 4 or greater. In Formula (1), P1 represents a main chain of the repeating unit, L1 represents a single bond or a divalent linking group, SP1 represents a spacer group, M1 represents a mesogenic group, and T1 represents a terminal group.
Abstract:
To suppress a phenomenon where an optical axis of the optically anisotropic layer is tilted when the optically anisotropic layer is produced by using a liquid crystalline compound showing smectic phase as a materials showing a higher level of orderliness. An optically anisotropic layer wherein a polymerizable composition, containing one or more polymerizable rod-like liquid crystal compound showing a smectic phase, is fixed in a state of smectic phase, and a direction of maximum refractive index of the optically anisotropic layer is inclined at 10° or smaller to the surface of the optically anisotropic layer, a method for manufacturing the same, a laminate and a method for manufacturing the same, a polarizing plate, a liquid crystal display device, and an organic EL display device.
Abstract:
An organic thin-film transistor including: a gate electrode, an organic semiconductor layer, a gate insulating layer, a source electrode, and a drain electrode on a substrate, in which the organic semiconductor layer includes an organic semiconductor and a resin (C) having one or more groups selected from the group consisting of a group having fluorine atoms, a group having silicon atoms, an alkyl group having one or more carbon atoms or having two or more carbon atoms in a case of forming an alkoxycarbonyl group, a cycloalkyl group, an aralkyl group, an aryloxycarbonyl group, an aromatic ring group substituted with at least one alkyl group, and an aromatic ring group substituted with at least one cycloalkyl group; and a method for manufacturing an organic thin-film transistor including: applying a coating solution which contains the organic semiconductor and the resin (C) and causing the resin (C) to be unevenly distributed.
Abstract:
Provided is a polymer film containing at least one of a compound represented by formula (1) of hydrates, solvates, or salts thereof. Y is a methine group or nitrogen atom. Qa, Qb, and Qc are a single bond or a divalent linking group. Ra, Rb, and Rc, are hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, cyano group, halogen group, or heterocyclic group. X2 is a single bond or a divalent linking group. X1 is a single bond or a predetermined divalent linking group. R1 and R2 are a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, or heterocyclic group