Abstract:
A medical device and method for manipulating movement of a micro-catheter, the device comprising an elongated tubular member having at least one lumen therein, wherein the lumen is proximally coupled to a pressurized fluid control system configured to regulate fluid flow through the elongated tubular member. An aperture is disposed near a distal end of the elongated tubular member, the aperture being in fluid communication with the at least one lumen. In one aspect, the aperture is oriented at an angle which is non parallel to the longitudinal axis of the elongated tubular member. A nozzle is coupled to the aperture, wherein the nozzle is configured to regulate pressurized flow out of the catheter to manipulate movement of the distal end of the elongated tubular member.
Abstract:
A method for generating electrical current indirectly from ocean wave action based on the reciprocating surge of the ocean that directly results from the overhead wave action. The method includes (a) positioning an energy transducer below overhead wave action and at a depth and orientation substantially responsive to reciprocating water surges arising from the overhead wave action; and (b) powering the energy transducer by the surges in alternating first and second directions to generate electrical current.
Abstract:
A catheter configured for imaging objects substantially in focus is described herein. An imaging device is disposed on the distal end of the catheter. The imaging device has an effective focal plane that is located in front of the imaging device. The catheter also includes a transparent focal instrument that has an outer periphery that is positioned at the effective focal plane of the imaging device, to enable objects in contact with the outer periphery of the transparent focal instrument to be imaged substantially in focus.
Abstract:
A serpentine robotic crawler includes an articulated body having at least two body segments serially connected and a continuous track operably supported along a perimeter of the articulated body. The serpentine robotic crawler is capable of a variety of movement modes and poses.
Abstract:
A hollow elongated cylinder is disclosed having a distal end and a proximal end, the proximal end configured to be removably connectable to a distal end of a syringe. An umbilical is removably inserted within said cylinder and configured for detachable connection to a data processor and a display device having a solid state imaging device disposed on a distal end of the umbilical. A lens system is disposed on a distal end of the solid state imaging device. The umbilical is inserted within the cylinder such that the distal end of the lens system is disposed at approximately the distal end of the cylinder.
Abstract:
A non-powered impact recorder is disclosed. The non-powered impact recorder includes a resonator tuned for a resonant response within a predetermined frequency range. A reduced cross-sectional area portion is formed within the resonator and configured to structurally fail when the resonator experiences the resonant response. Additionally, the non-powered impact recorder includes an electric circuit element disposed about the reduced cross-sectional area portion of the resonator. Upon structural failure of the resonator, the electric circuit element is broken to cause a discontinuity in the electric circuit element. Interrogation of the discontinuous electric circuit element facilitates approximation of impact frequency and/or impact energy.
Abstract:
A non-powered impact recorder is disclosed. The non-powered impact recorder includes a resonator tuned for a resonant response within a predetermined frequency range. A reduced cross-sectional area portion is formed within the resonator and configured to structurally fail when the resonator experiences the resonant response. Additionally, the non-powered impact recorder includes an electric circuit element disposed about the reduced cross-sectional area portion of the resonator. Upon structural failure of the resonator, the electric circuit element is broken to cause a discontinuity in the electric circuit element. Interrogation of the discontinuous electric circuit element facilitates approximation of impact frequency and/or impact energy.
Abstract:
A liquid missile for being projected from a launching device which includes a liquid charge combined with a non-rigid flight integrity component. The flight integrity component allows the liquid charge to be launched at increased speeds and distances by inhibiting substantial break-up of the liquid charge during flight.
Abstract:
The present invention relates to a single-target-specific fire fighting device for launching a liquid charge towards a localized target portion of a fire. The firefighting device is capable of highly precise target engagement at a single, localized area. In this manner, the fire fighting device can launch a single liquid charge effectively to a target location within a fire, such as the seat of a fire, in order to effectively extinguish the fire. The firefighting device includes at least a liquid charge having a flight integrity component, a barrel, a sighting structure coupled to the barrel, and a launching system for launching the liquid charge down the barrel at a target location.
Abstract:
The present invention features an intelligent sprinkler irrigation system for delivering fluid to an arbitrarily-shaped area in a precise manner. In general, the system comprises (a) a fluid source comprising a pressurized fluid; (b) at least one programmable sprinkler head fluidly connected to the fluid source; and (c) a computer system configured to control the sprinkler head to precisely deliver fluid according to a pre-determined sprinkler function. The computer system comprises a teach mode, wherein a plurality of drive parameters are learned and recorded. These drive parameters function to dictate the specific vector positioning of the sprinkler head during execution of the sprinkler component. The teach mode is further configured to learn and record a plurality of flow parameters, which function to control the fluid delivery component of the sprinkler head (e.g., the valve or nozzle), and more particularly, the manner in which the fluid is delivered or emitted from this component.