Abstract:
A force sensor including a support, a test body, two strain gauges, mechanical transmission means between the test body and the strain gauges so that a movement of the test body applies a strain onto the strain gauges in a first direction of the plane of the sensor, the transmission means being hinged relative to the support about a second direction in the plane of the sensor, the test body being accommodated within a first volume, the strain gauges being accommodated within a second volume, insulated by sealed insulation means. The sensor includes a sacrificial layer, a nanometric layer, a protective layer and a micrometric layer. The test body and at least one portion of the support are formed in the substrate, the sealed insulation means are partially formed by the nanometric layer and by the sacrificial layer, and the strain gauges are formed in the nanometric layer.
Abstract:
Aspects of the subject disclosure include a pressure-sensing device consisting of a housing including a membrane and one or more piezoresistive elements disposed on the membrane to sense a displacement due to a deflection of the membrane. A first set of electrodes is disposed over the membrane, and a second set of electrodes is disposed on a permeable port of the device at a distance from the membrane. The first and second sets of electrodes form an electrostatic actuator to exert a repulsive force onto the membrane to reduce the deflection of the membrane.
Abstract:
Piezoresistive detection resonant device comprising a substrate, a mobile par configured to move with respect the substrate, suspension elements suspending the mobile part to the substrate, a piezoresistive detection device to detect the motions of the mobile part, said piezoresistive detection device comprising at least one strain gauge, wherein the piezoresistive detection resonant device also comprises a folded spring with at least two spring arms, connected to the mobile part and configured to be deformed by the motion of the mobile part, the at least one gauge being suspended between the substrate and the folded spring in such manner that the deformation of the gauge is reduced compared to the motion of the mobile part.
Abstract:
A physical quantity sensor includes a deformable body in which strain occurs in response to a stress applied thereto, a vibrator vibrating with a frequency according to the strain or with an amplitude according to the strain, and a processor processing a signal output from the vibrator. The vibrator is mounted to the deformable body such that the strain transmits to the vibrator. The processor is bonded to the deformable body such that the strain does not substantially transmit to the processor. This physical quantity sensor can stably detects strain and tension acting on an object.
Abstract:
This invention relates to a resonant device with detection in the piezo-resistive plane made using surface technologies on a bulk, which comprises a resonator connected to this bulk by at least one embedded portion, means of exciting this resonator and detection means comprising at least one suspended beam type strain gauge made from piezo-resistive material, in which each strain gauge has a common plane with the resonator, and is connected to this resonator at a point situated outside of this at least one embedded portion to increase the stress observed by this strain gauge.
Abstract:
A sensor to reduce the loads due to different thermal expansions between a chip containing the sensing element, said chip preferably consisting of silicon, and the housing, typically made of steel, which can falsify the measuring results. The chip includes central and lateral fixations, which are mechanically decoupled from each other and are arranged on that end of the sensing element where the force application occurs.
Abstract:
A method of forming a thin film metallization layer having a predetermined residual stress and a predetermined sheet resistance and force measuring devices formed using the methods.
Abstract:
A sensor formed from a semiconductor material. The device comprises a support frame, a sensing element; and means for vibrating the sensing element at a frequency corresponding generally to a first resonant frequency vibration mode. Error detection means detects the resonant frequency vibration mode, the output of the error detection means being indicative of existence or otherwise an expected response of the resonant frequency vibration mode to the excitation. Means for detecting the deformation of the sensing element provides an output indicative of the parameter to be sensed, the deformation detecting means and error detection means being formed from the same elements.
Abstract:
Described are various improved methods of forming electronic devices, electro-mechanical devices, force-sensing devices, and accelerometers. Also described are various improved electronic devices, electro-mechanical devices, force-sensing devices, and accelerometers. The device comprises a plurality of vibrating beams joined with a support portion and configured for movement relative to the support portion. A layer of electrically conductive material is disposed over at least some of the surface of the moveable portion and support portion, the layer comprising an inert or a noble material having a Young's modulus which is greater than that of elemental gold. Alternatively, the layer may comprise an inert material having a coefficient of expansion which is less than that of elemental gold.
Abstract:
A method of forming apparatus including a force transducer on a silicon substrate having an upper surface, the silicon substrate including a dopant of one of the n-type or the p-type, the force transducer including a cavity having spaced end walls and a beam supported in the cavity, the beam extending between the end walls of the cavity, the method including the steps of: (a) implanting in the substrate a layer of a dopant of said one of the n-type or the p-type; (b) depositing an epitaxial layer on the upper surface of the substrate, the epitaxial layer including a dopant of the other of the n-type or the p-type; (c) implanting a pair of spaced sinkers through the epitaxial layer and into electrical connection with said layer, each of the sinkers including a dopant of the one of the n-type or the p-type; (d) anodizing the substrate to form porous silicon of the sinkers and the layer; (e) oxidizing the porous silicon to form silicon dioxide; and (f) etching the silicon dioxide to form the cavity and beam.