Abstract:
A method and device for automatically identifying a point of interest in a depth measurement on a viewed object using a video inspection device is disclosed. The video inspect device determines the three-dimensional coordinates in a region of interest on the viewed object and analyzes those surface points to determine the desired measurement application (e.g., determining the deepest point, the highest point, or the clearance between two surfaces). Based on the desired measurement application, the video inspection device automatically identifies the point of interest on the viewed object and places a cursor at that location.
Abstract:
Methods and devices are provided for providing a graphic overlay for measuring dimensions of features using a video inspection device. One or more measurement cursors are placed on pixels of an image of the object. One or more planes are determined parallel or normal to a reference surface or line and passing through surface points associated with the measurement cursors. A semi-transparent graphic overlay is placed on pixels with associated surface points having three-dimensional surface coordinates less than a predetermined distance from the plane(s) to help the user place the measurement cursors.
Abstract:
A method and device for providing a graphic overlay for measuring dimensions of features using a video inspection device. One or more measurement cursors are placed on pixels of an image of the object. One or more planes are determined parallel or normal to a reference surface or line and passing through surface points associated with the measurement cursors. A semi-transparent graphic overlay is placed on pixels with associated surface points having three-dimensional surface coordinates less than a predetermined distance from the plane(s) to help the user place the measurement cursors.
Abstract:
A method and device for measuring dimensions of a feature on or near an object using a video inspection device. A reference surface is determined based on reference surface points on the surface of the object. One or more measurement cursors are placed on measurement pixels of an image of the object. Projected reference surface points associated with the measurement pixels on the reference surface are determined. The dimensions of the feature can be determined using the three-dimensional coordinates of at least one of the projected reference surface points.
Abstract:
A method and device for automatically identifying a point of interest in a depth measurement on a viewed object using a video inspection device is disclosed. The video inspect device determines the three-dimensional coordinates in a region of interest on the viewed object and analyzes those surface points to determine the desired measurement application (e.g., determining the deepest point, the highest point, or the clearance between two surfaces). Based on the desired measurement application, the video inspection device automatically identifies the point of interest on the viewed object and places a cursor at that location.
Abstract:
A method and device for automatically identifying a point of interest (e.g., the deepest or highest point) on a viewed object using a video inspection device. The method involves placing a first cursor on an image of the object to establish a first slice plane and first surface contour line, as well as placing another cursor, offset from the first cursor, used to establish an offset (second) slice plane and an offset (second) surface contour line. Profile slice planes and profile surface contour lines are then determined between corresponding points on the first surface contour line and the offset (second) surface contour line to automatically identify the point of interest.
Abstract:
A handset for inspecting a target object with a sensor in an inspection module is disclosed. The handset includes a housing having a grip portion adapted to be held by a person, the housing adapted to selectively mechanically engage with the inspection module, a handset interface on the housing adapted to exchange signals with the inspection module, a handset processor, a user input interface accessible to the person gripping the grip portion and adapted to provide a control signal to the handset processor, and a user output interface responsive to the handset processor to display the data transmitted by the handset processor about the target object.
Abstract:
A method and device for automatically identifying a point of interest (e.g., the deepest or highest point) on the surface of an anomaly on a viewed object using a video inspection device is disclosed. The video inspection device obtains and displays an image of the surface of the viewed object. A reference surface is determined along with a region of interest that includes a plurality of points on the surface of the anomaly. The video inspection device determines a depth or height for each of the plurality of points on the surface of the anomaly in the region of interest. The point on the surface of the anomaly (e.g., having the greatest depth or height) is identified as the point of interest. A profile of the object surface at the point of interest is then determined.
Abstract:
A method and device for measuring dimensions of a feature on or near an object using a video inspection device. A reference surface is determined based on reference surface points on the surface of the object. One or more measurement cursors are placed on measurement pixels of an image of the object. Projected reference surface points associated with the measurement pixels on the reference surface are determined. The dimensions of the feature can be determined using the three-dimensional coordinates of at least one of the projected reference surface points.
Abstract:
A method and device for measuring dimensions of a feature on or near an object using a video inspection device. A reference surface is determined based on reference surface points on the surface of the object. One or more measurement cursors are placed on measurement pixels of an image of the object. Projected reference surface points associated with the measurement pixels on the reference surface are determined. The dimensions of the feature can be determined using the three-dimensional coordinates of at least one of the projected reference surface points.