Abstract:
An antiskid control system for a four-wheel-drive vehicle is arranged to calculate a difference between an average of wheel accelerations of front wheels and an average of wheel acceleration of rear wheels. When the difference is greater than or equal to the vibration determination threshold, the antiskid control system determines that a driveline vibration is generated and executes a control for converging the driveline vibration.
Abstract:
In an antiskid brake control system, an ECU estimates a wheel slip in accordance with a sensed wheel speed and controls a fluid pressure control valve for braking operation in accordance with the estimated wheel slip for an antiskid brake control, the fluid pressure being reduced when the wheel slip is enlarged and being increased when the wheel slip is lowered. When a vehicle-body speed is smaller than a predetermined quick pressure reduction prohibiting speed, the ECU performs a quick pressure reduction prohibiting control to restrain a quick pressure reduction having a greater reduction amount than a predetermined reduction amount.
Abstract:
In an antiskid brake control system, an ECU is constructed to calculate a pseudo vehicle-body speed in accordance with a sensed wheel speed, calculate a target wheel speed in view of a predetermined slip ratio obtained in accordance with a calculated pseudo vehicle-body speed, carry out pressure reducing control by reducing the fluid pressure within a hydraulic unit when the sensed wheel speed is smaller than the calculated target wheel speed, estimate an amount of fluid stored in a reservoir, and correct the target wheel speed to lessen the slip ratio when the estimated fluid amount is greater than a predetermined value.
Abstract:
An automotive brake control system with an anti-brake skid (ABS) unit which controls a wheel-brake cylinder pressure to each individual wheel cylinder of the road wheels to prevent a wheel lock-up condition during braking, and an ABS control unit being configured to be connected electrically to at least wheel speed sensors and the ABS unit to execute skid control having at least a reduce-pressure operating mode and a pressure build-up operating mode, when the wheel speed sensor signals indicate that at least one of the road wheels is locking up. The ABS control unit includes a road-surface-condition change determination section which determines, based on both a time length of brake-fluid-pressure control continuously executed during the skid control and a recovery acceleration of the wheel speed of the road wheel subjected to the skid control, whether there is a road-surface &mgr; change from low-&mgr; road to high-&mgr; road.
Abstract:
A road slope determining apparatus for a vehicle includes a slope measuring device that measures a slope of a road on which the vehicle is traveling; a distance measuring device that measures a distance traveled by the vehicle; and a determining apparatus that determines, based on the measured slope and the measured distance traveled, whether the vehicle is traveling on a gradient in which the slope is continuous or on a rough road in which the slope is discontinuous. This road slope determining apparatus is able to appropriately determine whether the road has a slope when the vehicle is traveling at slow speeds such as when running off-road, for example.
Abstract:
A vehicle device control device includes an automatic drive control device for executing an automatic drive control by controlling at least a driving torque generating device, which applies a driving torque on a vehicle, so that a vehicle speed reaches a preset target vehicle speed, and a shift position determination portion for determining a shift position of a gear lever of the vehicle, wherein in a case where the shift position determination portion determines that the gear lever is set at a neutral position on the basis of a determination result of the shift position determination portion while the automatic drive control is executed, the automatic drive control device controls the driving torque generating device so that the driving torque applied to the vehicle becomes zero while continuously executing the automatic drive control.
Abstract:
A vehicle control apparatus controlling a driving force or a braking force to be applied to a vehicle and conducting a vehicle control based on wheel speeds includes a detecting means detecting the wheel speed of each wheel provided at the vehicle, a storing means storing a predetermined valid wheel speed for each wheel, a determining means determining whether a difference between the detected wheel speed and a maximum wheel speed of the wheel speeds lies in a predetermined range, and an updating means updating the valid wheel speed based on the detected wheel speed of the wheel, when the detected wheel speed is lower than the predetermined valid wheel speed which is currently stored, in case that a result determined by the determining means is positive.
Abstract:
A vehicle control device for controlling the driving force and the braking force that is applied to a vehicle to approach a target wheel speed includes a plurality of determination parts that determine the wheel speed at a corresponding wheel; and a calculation part that calculates a valid wheel speed threshold for each wheel based on determined wheel speeds. The vehicle control device also includes a decision part that decides whether wheel speed is valid depending on whether the valid wheel speed threshold calculated for each wheel is below a specific speed threshold value, which is below the target wheel speed, and an estimation part that estimates the vehicle speed using the wheel speeds that are determined as being valid.
Abstract:
An electronic control device reduces, after a time at which constant speed traveling control is terminated (specific control termination time) not by an accelerating operation or braking operation but by, for example, an operation of a control switch, the vehicle driving force to a force corresponding to the amount of accelerating operation at the specific control termination time. Also, the electronic control device changes the vehicle braking force to a force corresponding to the amount of braking operation at the specific control termination time by controlling the braking hydraulic pressures with a hydraulic pressure circuit so that the value of a vehicle propulsive force, which takes a positive value when acting in the same direction as the driving force (and takes a negative value when acting in the opposite direction of the driving force) and which has a magnitude equal to a value resulting from subtracting the magnitude of the braking force from the magnitude of the driving force, is equal to or smaller than the value of the vehicle propulsive force at the specific control termination time.
Abstract:
A vehicle controller includes an obstacle-determining portion and a driving torque reducing portion. The obstacle-determining portion determines whether the vehicle is climbing up an obstacle, more specifically, whether the vehicle starts climbing up the obstacle. Then, the driving torque reducing portion performs a driving torque reduction control when it is determined that the vehicle is climbing up onto the obstacle.