Abstract:
The invention relates to an arrangement for generating X-rays upon incidence of electrons (4), which arrangement includes a liquid metal zone (7) in which a liquid metal (9) is provided as an X-ray target in such a manner that it can flow past a zone of electron incidence (8). In order to allow a pump of reduced capacity to be employed in such a device in order to provide the movement of the liquid metal, in accordance with the invention it is proposed to realize a pressure zone (10) which is separate from the liquid metal zone (7) and is provided with a pressure medium (11) in such a manner that the pressure medium (11) can exert a pressure on the liquid metal (9) present in the liquid metal zone (7) in order to force the liquid metal (9) past the zone of electron incidence (8), the pressure zone (10) being provided with a pressure accumulator (R3) which can be replenished in order to apply the pressure.
Abstract:
The invention relates to an arrangement for generating an X-ray or gamma beam with small cross-section and variable direction, having an X-ray or gamma emitter, from the focus of which a bundle of rays emerges, and a diaphragm arrangement, which cuts out a beam from the bundle of rays and comprises a hollow-cylindrical first diaphragm body which is rotatable about its axis of symmetry and has two mutually offset helical slits on the circumference. In this arrangement, an X-ray beam with at least approximately square cross-section is cut out on a relatively long hollow-cylindrical body with small diameter by the slits winding around the diaphragm body in at least one turn each and being shaped in such a way that at least one straight line runs through the slits towards the focus, the position of which line can be varied by turning the diaphragm body.
Abstract:
The invention relates to a fluorescence radiation source in which an anode which encloses a member is struck by electrons on its side which faces the member and in which the primary X-ray radiation generated in the anode generates fluorescence radiation in the member. The member is preferably arranged within an enclosing shield which keeps scattered electrons remote from the member.
Abstract:
The invention relates to a method for determination of the cross-sections for elastic scattered radiation in which a polychromatic radiation source is used but in which good differentiation between various substances is still possible.
Abstract:
The invention relates to an X-ray apparatus which allows for the determination of the elastically scattered X-rays and the evaluation of the information contained therein. Because the scattered radiation exhibits a pronounced maximum value as a function of the scatter angle and because the scatter angle at which this maximum value occurs depends on the material in which the scattered radiation is produced, X-ray images thus formed contain essential information concerning the chemical composition of the body examined.
Abstract:
In a device for determining the density distribution on a straight line by means of a narrow penetrating beam, the measuring accuracy for the center of an object to be examined is increased in that the primary beam is not only displaced perpendicularly to its direction, but is also rotated around a point in this center. To this end, a radiation source and a detector device are mounted on a supporting device which can rotate the path of the primary beam around a central point, preferably the center of the object, around an axis which intersects the path of the primary beam at right angles.
Abstract:
The invention relates to a device for measuring a scatter coefficient distribution in a plane of a body. The plane is irradiated in different directions by a primary radiation beam along beam paths which are each time situated in parallel in a direction. Scattered radiation which is generated by a primary radiation beam along its path is measured by detectors which are situated on both sides of the plane and which enclose the body as completely as possible. The scatter coefficient distribution is determined by iteration by calculating a scatter value for each beam path from an assumed distribution and by comparing this scatter value with the associated measured scattered radiation. From the difference between calculated and measured values a correction is determined and taken up in the calculated value.
Abstract:
A method for identifying a substance includes determining a first molecular interference function (MIF) for a first substance. The method also includes determining a second MIF for a second substance. The method further includes generating a residual MIF at least partially based on a comparison of the second MIF to the first MIF. The method also includes identifying the type of substance based on the residual MIF.
Abstract:
A method for making a secondary collimator that includes at least one plate having a plurality of slits defined therein includes determining a gap thickness between plate positions of the secondary collimator based on at least one dimension of the at least one plate and fabricating a base plate from a base plate blank. The base plate includes at least two slots being spaced apart by the gap thickness. The at least one plate is inserted into a first slot of the at least two slots to form the secondary collimator.
Abstract:
Methods, a processor, and a system for improving an accuracy of identification of a substance are described. One of the methods includes determining whether a relative molecular interference function of the substance includes at least one peak.