Abstract:
Hazard detection systems and methods according to embodiments described herein are operative to enable a user to interface with the hazard detection system by performing a touchless gesture. The touchless gesture can be performed in a vicinity of the hazard detection system without requiring physical access to the hazard detection system. This enables the user to interact with the hazard detection system even if it is out of reach. The hazard detection system can detect gestures and perform an appropriate action responsive to the detected gesture. In one embodiment, the hazard detection system can silence its audible alarm or pre-emptively turn off its audible alarm in response to a detected gesture. Gestures can be detected using one or more ultrasonic sensors, or gestures can be detected using a motion detector in combination with one or more ultrasonic sensors.
Abstract:
In an implementation of the disclosed subject matter, a device may emit a first emission sequence of infrared radiation at a subject, and capture a first reflected sequence of infrared radiation reflected from the subject. The first emission sequence may be compared to the first reflected sequence, and, based on the comparison, a sequence of variations may be determined. The sequence of variations may be compared to signal pattern stored in a sleep profile for the subject. The subject may be determined to have exhibited sleep behavior based on the comparison of the sequence of variations to the signal pattern stored in the sleep profile. In response to determining the subject has exhibited sleep behavior, the device may capture a second reflected sequence of radiation reflected from the subject. A breathing rate of the subject and/or a heart rate of the subject may be determined based on the second reflected sequence.
Abstract:
A system is provided including a plurality of inter-connected premises management devices, each including one or more sensors that generate data about an environment, and a control device to control one or more operations of the premises management system, the control device including a movement detector. The premises management system detects an attempt by an intruder to damage the control device based on data from the movement detector indicating an abnormal movement applied to the control device, historical data obtained from the sensors, and current data obtained from the sensors.
Abstract:
A magnet and magnetometer may be integrated into a smart home environment and allow it to be placed into an away mode of operation despite an entry point being semi-open. The disclosed implementations can detect a magnetic field strength and determine, based on the detected field strength, an approximate distance that a moveable partition is open. In some configurations, the presence of a second magnetic source can be detected. A notice may be generated based on one or more signals received from the magnetometer. The notice may be sent to a controller, a remote system, a remote device, and/or a client device as disclosed herein.
Abstract:
A path light control device that can include a processor and light source, and any combination of ambient light sensors (ALS), passive infrared (PIR) sensors, accelerometers and compass sensors, where the sensor sampling mode and sampling period may be dynamically determined to permit the ALS to accurately measure an ambient light without excessive operation. The accelerometer and compass sensor may be provided to determine device movement and orientation to avoid sensor operation when movement or orientation of the device indicates that the data of the sensor is not applicable for proper device control.
Abstract:
Systems and methods of using active infrared (AIR) sensors to map a room of a home or building and determine whether an external portal (e.g., window and/or door) of the room is open or closed are provided. In particular, the systems and methods include outputting infrared (IR) light from an IR light source of an active infrared (AIR) sensor, receiving reflected IR light with a light sensor, and determining, with a processor coupled to the light sensor, whether a window of a room is open according to the received reflected IR light.
Abstract:
Hazard detection systems and methods according to embodiments described herein are operative to enable a user to interface with the hazard detection system by performing a touchless gesture. The touchless gesture can be performed in a vicinity of the hazard detection system without requiring physical access to the hazard detection system. This enables the user to interact with the hazard detection system even if it is out of reach. The hazard detection system can detect gestures and perform an appropriate action responsive to the detected gesture. In one embodiment, the hazard detection system can silence its audible alarm or pre-emptively turn off its audible alarm in response to a detected gesture. Gestures can be detected by processing sensor data to determine whether periodic shapes are detected.
Abstract:
A thermostat may include one or more temperature sensors, and a processing system configured to be in operative communication with an HVAC system. The processing system may be configured to operate a first operating state characterized by relatively low power consumption and a corresponding relatively low associated heat generation, and a second operating state characterized by relatively high power consumption and a corresponding relatively high associated heat generation. During time intervals in which the processing system is operating in the first operating state, the processing system may process the temperature sensor measurements according to a first ambient temperature determination algorithm to compute the determined ambient temperature. During time intervals in which the processing system is operating in the second operating state, the processing system may process the temperature sensor measurements according to a second ambient temperature determination algorithm to compute the determined ambient temperature.
Abstract:
An image of at least a portion of a room may be received, the image of the room comprising an image of a sensor mounted in the room. At least one optical parameter related to the image of the room may also be received. A distance may be determined between the sensor and a camera that captured the image of the room, wherein the determination of the distance is based at least in part on the optical parameters and on known physical dimensions of the sensor. A sensitivity requirement of the sensor may be determined, based on the distance. The determined sensitivity may be sent to control logic of the sensor.
Abstract:
A path light control device that can include a processor and light source, and any combination of ambient light sensors (ALS), passive infrared (PIR) sensors, accelerometers and compass sensors, where the sensor sampling mode and sampling period may be dynamically determined to permit the ALS to accurately measure an ambient light without excessive operation. The accelerometer and compass sensor may be provided to determine device movement and orientation to avoid sensor operation when movement or orientation of the device indicates that the data of the sensor is not applicable for proper device control.