Abstract:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window containing a predetermined number of bits that are to be programmed in the array and determining which of the predetermined number of bits are to be programmed in the memory array. The predetermined number of bits are simultaneously programmed to corresponding memory cells in the array. A programming state of the predetermined number of bits in the array is simultaneously verified.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A method and apparatus are provided for high performance, high voltage memory operations on selected memory cells (200) of a semiconductor memory device (100). A high voltage generator (106) during program or erase operations provides a continuous high voltage level (702) on selected word lines (502) and maintains a continuous high voltage level supply to a bit line decoder (120) which sequentially provides the high voltage level (706) to a first portion of bit lines (504) and discharges (708) those bit lines (504) before providing the high voltage level to a second portion (710). For additional improvements to program operations, the high voltage generator (106) decouples high voltages provided to the word lines (502) and the bit lines (504) by providing a current flow control device (1208) therebetween and provides a boosting voltage at a time (1104) to overcome a voltage level drop (1102) resulting from a capacitor load associated with selected bit lines (504) and/or the bit line decoder (120) precharges (1716) a second portion of the bit lines (504) while providing a high voltage level to a first portion to program (1706) a first portion of memory cells (200). For improvements to read operations, whether dynamic reference cells (2002) are blank is determined by providing non-identically regulated high voltage levels from a first voltage source (2112) to the dynamic reference cells (2002) and from a second voltage source (2104) to static reference cells (2004) and, if the dynamic reference cells (2002) are not blank, reads selected memory cells (200) by providing identically regulated high voltage levels to the selected memory cells (200), the dynamic reference cells (2002) and the static reference cells (2004).
Abstract:
A voltage regulator may include an operational-amplifier section, a capacitor connected to an output of the operational-amplifier section, and a switch configured to connect the capacitor to a voltage supply. The switch is configured to charge the capacitor before activating the operational-amplifier section. The capacitor is configured to store charge to supplement current being supplied from the operational-amplifier section. The voltage regulator may be used to supply power to non-volatile memory cells.
Abstract:
A method is provided for programming a nonvolatile memory device including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window that identifies a plurality of memory cells in the array. A first group of memory cells to be programmed is identified from the plurality of memory cells in the programming window. The first group of memory cells is programmed and a programming state of the first group of memory cells is verified.
Abstract:
Non-volatile memory, such as Flash memory, is programmed by writing a window of information to memory. The programmed/non-programmed state of each memory cell may be dynamically determined for each window and stored as an indication bit. These techniques can provide for improved average power drain and a reduced maximum current per window during programming.
Abstract:
A simultaneous operation flash memory capable of providing double protection to An OTP sector. The preferred simultaneous operation flash memory comprises an OTP write-protect CAM, which is in a programmed state if the OTP sector is write-protected. In addition, the preferred simultaneous flash memory further includes an OTP sector lock CAM that is electrically connected with the OTP write-protect CAM. The OTP sector lock CAM is used to lock the OTP write-protect CAM in the programmed state, which, in turn, will designate the OTP sector as read only.
Abstract:
The present invention discloses sector-based redundancy that is capable of making repairs using a plurality of redundant columns of memory cells in a dual bank memory device during simultaneous operation. The simultaneous operation memory device includes a plurality of redundant blocks that can be configured to be located in an upper bank or a sliding lower bank. The redundant blocks are comprised of sectors and each sector contains columns of memory cells. During simultaneous operation, the memory device is capable of reading the columns of memory cells in one bank and writing columns of memory cells in the other bank at the same time. In addition, the simultaneous operation memory device uses sector-based redundancy to repair columns of memory cells that are defective in one bank by electrically exchanging them with redundant columns of memory cells and, at the same time, repair columns of memory cells that are defective in the other bank. The dual bank sector-based redundancy includes a plurality of address CAM circuits that are configurably associated with the redundant blocks based on the bank location of the redundant blocks. The address CAM circuits are configured by a redundancy CAM read drain decoder circuit.