Abstract:
Controlling adhesives between substrates and carriers includes forming a depression into a bonding area of a backside surface of a substrate of a print head where the bonding area being formed proximate an ink feed slot formed through the thickness of the substrate from the backside surface to a front side surface; placing an adhesive between the bonding area and a substrate carrier, and moving the substrate and the substrate carrier together such that the adhesive flows into the depression.
Abstract:
In an embodiment, a fluid ejection device includes a substrate with a fluid slot formed therein, a chamber layer formed on the substrate defining fluid chambers on both sides of the fluid slot, a thin-film layer between the substrate and chamber layer that defines an ink feedhole (IFH) between the fluid slot and the chamber layer, and a chamber layer extension that forms a bridge across the IFH between two chambers.
Abstract:
Fluid ejection devices with particle tolerant thin-film extensions are disclosed. An example apparatus includes a printer; a reservoir; and a printhead including: a firing chamber; a channel to receive fluid from the reservoir, the channel is coupled to the firing chamber, the channel having an opening; and a particle-tolerant film disposed adjacent the opening of the channel, the particle-tolerant film disposed between the channel and the reservoir, the particle-tolerant film to deter particles within the fluid from settling in an area adjacent the opening.
Abstract:
A fluid dispenser is disclosed herein. An example of such a fluid dispenser includes a member configured to define a plurality of orifices through which a fluid is ejected and a manifold including a plurality of fluid passageways each of which is configured to have a different angle relative to the member. This example of a fluid dispenser additionally includes a plurality of slots each of which is coupled to a different one of the fluid passageways of the manifold to conduct the fluid from the fluid passageways towards the orifices. Additional features and modifications of this fluid dispenser are disclosed herein, as are other examples of fluid dispensers.
Abstract:
In an embodiment, a fluid ejection device includes a substrate with a fluid slot formed therein, a chamber layer formed on the substrate defining fluid chambers on both sides of the fluid slot, a thin-film layer between the substrate and chamber layer that defines an ink feedhole (IFH) between the fluid slot and the chamber layer, and a chamber layer extension that forms a bridge across the IFH between two chambers.
Abstract:
A fluid ejection device may include a substrate having front and back opposing surfaces and a slot extending through the substrate between the back and front surfaces and along an axis of the substrate. A recessed end region may be formed in the back surface at each end of the slot.
Abstract:
A method of forming a substrate for a fluid ejection device includes forming an opening in the substrate from a second side toward a first side, and further forming the opening in the substrate to the first side, including increasing the opening to the first side and increasing the opening at the second side, and forming the opening with substantially parallel sidewalls intermediate the first side and the second side and converging sidewalls to the first side.
Abstract:
A fluid dispenser is disclosed herein. An example of such a fluid dispenser includes a member configured to define a plurality of orifices through which a fluid is ejected and a manifold including a plurality of fluid passageways each of which is configured to have a different angle relative to the member. This example of a fluid dispenser additionally includes a plurality of slots each of which is coupled to a different one of the fluid passageways of the manifold to conduct the fluid from the fluid passageways towards the orifices. Additional features and modifications of this fluid dispenser are disclosed herein, as are other examples of fluid dispensers.
Abstract:
A method of forming a substrate for a fluid ejection device includes forming an opening in the substrate from a second side toward a first side, and further forming the opening in the substrate to the first side, including increasing the opening to the first side and increasing the opening at the second side, and forming the opening with substantially parallel sidewalls intermediate the first side and the second side and converging sidewalls to the first side.
Abstract:
In an embodiment, a fluid ejection device includes a die including a fluid feed slot that extends from a back side to a front side of the die, a firing chamber formed on the front side to receive fluid from the feed slot, a fluid distribution manifold adhered to the back side to provide fluid to the feed slot, and a corrosion-resistant layer coating the back side of the die so as not to extend into the feed slot.