Abstract:
In an embodiment an interference cancellation method includes generating, by a first device, a first packet, wherein the first packet comprises a first group of elements, a second group of elements, and user data, the first group of elements being different from the second group of elements and sending, by the first device, the first packet to a second device by using at least one pair of subcarriers, wherein two subcarriers in the at least one pair of subcarriers are symmetrical with respect to a direct current subcarrier, and wherein the first packet is usable by the second device to cancel interference in the user data based on the first group of elements and the second group of elements.
Abstract:
The present disclosure relates to signal sending methods and apparatus. One example method includes generating a first data signal based on channel state information, receiving a second data signal sent by a primary transmitter, determining a phase of the second data signal, and sending the first data signal based on a phase of a first measurement signal sent by the primary transmitter and the phase of the second data signal sent by the primary transmitter.
Abstract:
A gesture input method for a wearable device and a wearable device are disclosed. In an embodiment, a gesture input method includes collecting, by a sensor of the wearable device, a track of a movement of a user gesture in a track recognition area, wherein the track recognition area is a preset scan area of the sensor, and wherein the track recognition area comprises a gesture recognition area and a gesture sensing area located above the gesture recognition area and recognizing, by the sensor, the track in the gesture recognition area as input information based on area information of the track recognition area, wherein the area information comprises coordinate system information of the track recognition area.
Abstract:
The present disclosure relates to optical fiber plugs, optical fiber adapters, and optical fiber connector assemblies. One example optical fiber plug includes a ferrule, a sleeve, and a lock cap. At least one lock block is disposed on an inner wall of the lock cap. The at least one lock block is configured to be engaged and locked with a lock slot on an optical fiber adapter. Two stop blocks are disposed on the inner wall of the lock cap. A stop rod is disposed on an outer wall of the sleeve. The stop rod is located between the two stop blocks. The lock cap rotates relative to the sleeve within an angle range limited by the two stop blocks.
Abstract:
A planar-transmission-line-to-waveguide adapter is provided, to reduce limitations on bandwidth expansion. The planar-transmission-line-to-waveguide adapter includes a planar transmission line structure includes at least a planar transmission line, a dielectric substrate, and a metal ground having a coupling gap. a gradient waveguide structure includes m dielectric waveguides with gradient sizes, and any dielectric waveguide is surrounded by metal via holes in a dielectric substrate, where m is a positive integer not less than 2. a1st dielectric waveguide in the m dielectric waveguides with gradient sizes is coupled with the coupling gap in the planar transmission line structure. Adjacent dielectric waveguides are connected by using a metal ground, and a radiation patch is disposed between the adjacent dielectric waveguides. A metal ground and a radiation patch are disposed on a surface on which an mth dielectric waveguide comes into contact with a standard waveguide.
Abstract:
A fiber patch cord apparatus and a port panel, which may simplify a structure of the fiber patch cord system. The fiber patch cord apparatus includes a crawler configured to move to a corresponding position of a source adapter port along a crawling guide rail provided by a port panel, a clamper configured to clamp a fiber patch cord on the source adapter port, and a puller and inserter configured to pull the fiber patch cord out of the source adapter port and a controller that is configured to control the fiber patch cord apparatus to move on a crawling guide rail, where the controller is further configured to control a mold strip group on the port panel to move. The embodiments of the present invention are used to pull and insert a fiber patch cord.
Abstract:
Embodiments of the present invention disclose a method for controlling power of an uplink multiple-input multiple-output channel, and a user equipment that are used to support an uplink MIMO application scenario and implement control of transmit power of a UE. The method in the embodiments of the present invention includes: when total transmit power of a user equipment UE is greater than maximum allowed transmit power, performing, by the UE, power reduction for an uplink multiple-input multiple-output MIMO channel on which a main data transmission block and a secondary data transmission block are sent, so that the total transmit power of the UE after the reduction is less than or equal to the maximum allowed transmit power.
Abstract:
A method for managing uplink carrier frequencies is provided, which is applicable to the field of communication. The method includes the following steps: A state switching response message sent by a UE is received, where the state switching response message includes a result of state switching performed by on a secondary uplink carrier serving cell; The result of the state switching is notified to a secondary uplink carrier non-serving cell in a secondary carrier active set through an RNC. A device and a system for managing uplink carrier frequencies are further provided. Through the method, device, and system provided in embodiments of the present invention, the uplink carrier frequencies are managed, so as to facilitate transmission of uplink data during multi-cell collaboration.
Abstract:
A transceiver includes: a baseband control apparatus (21); an up-conversion apparatus (22), connected to the baseband control apparatus (21), and configured to perform up-conversion on a baseband signal generated by the baseband control apparatus (21), to obtain an intermediate frequency signal; at least two radio frequency channels (23) disposed in parallel, connected to the up-conversion apparatus (22), and configured to perform frequency conversion, amplification, and filtering on the intermediate frequency signal, to obtain a radio frequency signal corresponding to the frequency band covered by the each radio frequency channel; and an antenna (24), connected in series with an output end of any radio frequency channel of the at least two radio frequency channels (23), and configured to transmit the radio frequency signal obtained by the radio frequency channel. The transceiver enables relatively high wireless communication performance when an ultra wide bandwidth is implemented.
Abstract:
A method for data exchange between access points (APs) includes: receiving, by a source AP, available APs of all stations (STAs) having association relationships with the source AP, and operating channels of the available APs, where the available APs and the operating channels of the available APs are sent by the STAs; determining, by the source AP, a relay STA according to the received available APs of the STAs and the received operating channels of the available APs, where an available AP of the relay STA includes a destination AP that needs to perform data exchange with the source AP; and sending a relay request message to the relay STA, where the relay request message includes the destination AP, so that the relay STA sends data from the source AP to the destination AP after receiving the relay request message.