Abstract:
Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a hybrid key generator and memory protection hardware. The hybrid key generator is to generate a hybrid key based on a public key and multiple process identifiers. Each of the process identifiers corresponds to one or more memory spaces in a memory. The memory protection hardware is to use the first hybrid key to protect to the memory spaces.
Abstract:
Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and branch circuitry coupled to the decode circuitry. The decode circuitry is to decode a branch hardening instruction to mitigate vulnerability to a speculative execution attack. The branch circuitry is to be hardened in response to the branch hardening instruction.
Abstract:
Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and load circuitry coupled to the decode circuitry. The decode circuitry is to decode a load hardening instruction to mitigate vulnerability to a speculative execution attack. The load circuitry is to be hardened in response to the load hardening instruction.
Abstract:
In one embodiment, a predefined behavior of a virtual machine monitor (VMM) with respect to one or more virtual machines (VMs) is identified, and processor-managed resources associated with the one or more VMs are utilized based on the predefined behavior of the VMM.
Abstract:
Embodiments of the invention provide a method of creating, based on an operating-system-scheduled thread running on an operating-system-visible sequencer and using an instruction set extension, a persistent user-level thread to run on an operating-system-sequestered sequencer independently of context switch activities on the operating-system-scheduled thread. The operating-system-scheduled thread and the persistent user-level thread may share a common virtual address space. Embodiments of the invention may also provide a method of causing a service thread running on an additional operating-system-visible sequencer to provide operating system services to the persistent user-level thread. Embodiments of the invention may further provide apparatus, system, and machine-readable medium thereof.
Abstract:
Method, apparatus, and system for monitoring performance within a processing resource, which may be used to modify user-level software. Some embodiments of the invention pertain to an architecture to allow a user to improve software running on a processing resources on a per-thread basis in real-time and without incurring significant processing overhead.
Abstract:
Apparatus and method for specifying quantum operation parallelism. For example, one embodiment of an apparatus comprises: instruction fetch circuitry to fetch a plurality of quantum instructions from a memory or a cache; slice-based instruction processing circuitry to identify quantum circuit slices comprising sets of one or more of the plurality of quantum instructions; and one or more instruction decoders to decode the quantum instructions to generate quantum microoperations; and quantum execution circuitry to execute sets of the quantum microoperations in parallel based on the quantum circuit slices.
Abstract:
Apparatus and method for performing a quantum rotation operation. For example, one embodiment of an apparatus comprises: a decoder to decode a plurality of instructions; execution circuitry to execute a first instruction or first set of the instructions to generate a floating point (FP) value and to store the FP value in a first register; the execution circuitry to execute a second instruction or second set of the one or more of the instructions to read the FP value from the first register and compress the FP value to generate a compressed FP value having a precision selected for performing quantum rotation operations; and quantum interface circuitry to process the compressed FP value to cause a quantum rotation to be performed on one or more qubits of a quantum processor.
Abstract:
Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a decode circuitry and store circuitry coupled to the decode circuitry. The decode circuitry is to decode a store hardening instruction to mitigate vulnerability to a speculative execution attack. The store circuitry is to be hardened in response to the store hardening instruction.