Abstract:
Embodiments of a packet structure for frequency offset estimation and method for UL MU-MIMO communication in high-efficiency Wi-Fi (HEW) are generally described herein. In some embodiments, the packet structure may comprise a short training field (STF), a number of long-training fields (LTFs) following the STF, a signal field (SIGB)to follow the LTFs, and a data field to follow the signal field. The data field may comprise an UL MU-MIMO transmission from a plurality of scheduled stations. The number of LTFs may be equal to or greater than a number of data streams as part of the UL MU-MIMO transmission, and the plurality of scheduled stations may share the number of LTFs by transmitting on different orthogonal tone sets.
Abstract:
This disclosure describes methods, apparatus, and systems related to a bandwidth and sub-channel indication system. A device may determine a wireless communication channel with a first device in accordance with a wireless communication standard. The device may generate a high efficiency frame in accordance with a high efficiency communication standard the high efficiency frame including, at least in part, one or more high efficiency signal fields. The device may determine one or more indication bits included in at least one of the one or more high efficiency signal fields. The device may cause to send the high efficiency frame to the first device over the wireless communication channel.
Abstract:
This disclosure describes methods, apparatus, and systems related to a high efficiency SIGNAL field in high efficiency wireless LAN access network. A device may determine at least one communication channel with one or more devices including a first device and a second device. The device may generate a high efficiency preamble in accordance with a high efficiency communication standard, the high efficiency preamble including, at least in part, a first high efficiency SIGNAL field and a second high efficiency SIGNAL field. The device may partition the second high efficiency SIGNAL fields into, at least in part, a common subfield, and one or more device specific subfields. The device may send the high efficiency preamble to at least one of the one or more devices.
Abstract:
This disclosure describes systems, methods, computer readable media, and/or apparatus related to encoding wireless communication preamble structures with cyclic redundancy check (CRC) that is performed on both a common part, as well as, station specific parts of a signaling field. The signaling field generated by this mechanism may be relatively shorter, resulting in less preamble overhead, than if a separate CRC was to be provided for each of the station specific parts, as well as the common part of the signaling field. In additional embodiments, tail bits may be provided for a combination of the common part of the signaling field and each station specific part of the signaling field. Compared to providing tail bits separately for the common part and each of the station specific parts, removing the tail bits from the tail bits form the common part may result in relatively less overhead of the preamble structure.
Abstract:
This disclosure describes methods, apparatus, and systems related to a high efficiency signal field encoding structure. A device may determine a communications channel having a bandwidth of a frequency band. The device may determine a first group of subchannels of the bandwidth and a second group of subchannels of the bandwidth. The device may determine a high efficiency signal field to be transmitted on the communications channel to a first device. The device may encode the high efficiency signal field using the first group of subchannels and the second group of subchannels. The device may cause to send the high efficiency signal field to the first device.
Abstract:
A transmitter/receiver pair may estimate a first channel interference caused during the spatial reuse phase by the transmitter/receiver pair to other transmitter/receiver pairs over a channel. A second channel interference experienced by the transmitter/receiver pair may be estimated during the spatial reuse phase by the transmitter/receiver pair from the other transmitter/receiver pairs. An interference margin may be estimated for the channel based on the first and second channel interferences. The interference margin may be announced to the other transmitter/receiver pairs in frame. The interference margin may then be complied with while communicating over the channel in order to control the interference.
Abstract:
Apparatuses, methods, and computer readable media for signaling high efficiency short training field are disclosed. A high-efficiency wireless local-area network (HEW) station is disclosed. The HEW station may comprise circuitry configured to: receive a trigger frame comprising an allocation of a resource block for the HEW station, and transmit a high efficiency short training field (HE-STF) with a same bandwidth as a subsequent data portion, wherein the transmit is to be in accordance with orthogonal frequency division multiple access (OFDMA) and wherein the transmit is within the resource block. A subcarrier allocation for the HE-STF may match a subcarrier allocation for the subsequent data portion. The HE-STF and the subsequent data portion may be transmitted with a same power. A total power of active subcarriers of the HE-STF may be equal to or proportional to a second total of data subcarriers and pilot subcarriers of the subsequent data portion.
Abstract:
Embodiments for long training field (LTF) sequences or other types of sequences in uplink multi-user multiple-input multiple-output communications are provided. The LTF sequences can permit channel estimation, including determination of carrier frequency offsets. In some embodiments, an LTF sequence can be formatted and/or conveyed without reliance on pilot tones. In other embodiments, the LTF sequence can rely on pilot tones, where a sequence associated with the pilot tones can include elements that are orthogonal among transmitter station devices that communicate according to MU-MIMO.
Abstract:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
Abstract:
Some demonstrative embodiments include devices, systems and methods of multi-user downlink transmission. For example, an apparatus may include a transmitter to transmit a multi-user (MU) downlink request to a plurality of wireless stations; and a receiver to receive one or more responses from one or more wireless stations of the plurality of wireless stations, wherein the transmitter is to transmit to the plurality of wireless stations a MU scheduling message indicating resources allocated to a downlink transmission to at least one scheduled station of the one or more wireless stations, and to transmit the downlink transmission to the at least one scheduled station according to the MU scheduling message.