Abstract:
A system for performing an interventional procedure comprises an interventional instrument and a control system. The control system comprises a processor and a memory comprising machine-readable instructions that, when executed by the processor, cause the control system to receive a model of an anatomic structure record a target location for a target structure identified in the model, determine a planned deployment location for the interventional instrument to perform the interventional procedure on the target structure, receive sensor data including an operative image of the target structure from a sensor system, and identify, based on the operative image of the target structure, a revised deployment location for the interventional instrument to perform the interventional procedure on the target structure.
Abstract:
A catheter system comprises an elongate flexible catheter and a support structure mounted on the catheter. The support structure comprises a first alignment feature and a second alignment feature. The first alignment feature is configured to mate with a first sensor component and the second alignment feature configured to mate with a second sensor component. When the system further comprises a first sensor component mated with the first alignment feature and a second sensor component mated with the second alignment feature, the first sensor component is fixed relative to the second sensor component in at least one degree of freedom at the support structure by the first and second alignment features.
Abstract:
A method of deploying an interventional instrument comprises identifying a target structure in an anatomic frame of reference. The method further comprises determining a target region in the anatomic frame of reference with respect to a current position of the interventional instrument and recording a first engagement location of the interventional instrument within the target region.
Abstract:
Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.
Abstract:
A shape sensing apparatus comprises an instrument including an elongated shaft with a neutral axis. The shape sensor also includes a first shape sensor with an elongated optical fiber extending within the elongated shaft at a first radial distance from the neutral axis. The apparatus also includes a shape sensor compensation device extending within the elongated shaft and including a temperature sensor. The apparatus also comprises a tracking system for receiving shape data from the first shape sensor and compensating data from the shape sensor compensation device for use in calculating a bend measurement for the instrument.
Abstract:
In accordance with various exemplary embodiments of the present teachings, a surgical device can include a first pair of articulably coupled links, a second pair of articulably coupled links, and a tension member coupled to the first pair of links and the second pair of links such that altering tension in the tension member exerts a force tending to articulate the first pair of links and the second pair of links so as to bend the first pair of links and the second pair of links. The surgical device can be configured such that the first pair of links has a lower resistance to bending than the second pair of links upon altering the tension in the tension member.
Abstract:
Waypoints for a steerable medical device are stored as the steerable medical device is moved within a patient. The stored waypoints are an ordered sequence of locations. The ordered sequence of locations defines a safe path within the patient for moving an articulatable portion of the steerable medical device. The articulatable portion of the steerable medical device is constrained to follow the safe path as the articulatable portion moves within the patient. For example, the articulatable portion of the steerable medical device is constrained to remain within a boundary region enclosing the safe path as the articulatable portion of the steerable medical device follows the safe path.
Abstract:
A method performed by a computing system comprises receiving shape information for an elongate flexible portion of a medical instrument. The medical instrument includes a reference portion movably coupled to a fixture having a known pose in a surgical reference frame. The fixture includes a constraint structure having a known constraint structure location in the surgical reference frame. The elongate flexible portion is coupled to the reference portion and is sized to pass through the constraint structure. The method further includes receiving reference portion position information in the surgical reference frame; determining an estimated constraint structure location in the surgical reference frame from the reference portion position information and the shape information; determining a correction factor by comparing the estimated constraint structure location to the known constraint structure location; and modifying the shape information based upon the correction factor.
Abstract:
A system for performing an interventional procedure includes an interventional instrument and a control system. The instrument includes a catheter and an interventional tool extendable from the catheter. The control system includes a processor and a memory comprising machine-readable instructions that cause the control system to: receive a model of an anatomic structure, the anatomic structure including a plurality of passageways; identify a target structure in the model; receive information about a maximum extension length the interventional tool can be extended relative to a distal tip of the catheter; based upon the received information about the maximum extension length, identify a planned deployment location for positioning the distal tip of the catheter to perform the interventional procedure on the target structure; determine a navigational path for the catheter to the target structure; and navigate the catheter to the identified planned deployment location via computer control or based on user input.
Abstract:
A method performed by a computing system comprises receiving a fluoroscopic image of a patient anatomy while a portion of a medical instrument is positioned within the patient anatomy. The fluoroscopic image has a fluoroscopic frame of reference. The portion has a sensed position in an anatomic model frame of reference. The method further comprises identifying the portion in the fluoroscopic image and identifying an extracted position of the portion in the fluoroscopic frame of reference using the identified portion in the fluoroscopic image. The method further comprises registering the fluoroscopic frame of reference to the anatomic model frame of reference based on the sensed position of the portion and the extracted position of the portion.