摘要:
The gait rehabilitation robot having a passive mechanism includes: a first auxiliary link member connected to a portion between the pelvis and the knee of a rehabilitating person; a joint coupled to a lower end of the first auxiliary link member; a second auxiliary link member coupled to the lower end of the joint and connected to a portion between the pelvis and the knee of the rehabilitating person; a first spring coupled to an upper end of the first auxiliary link member to prevent introversion and extroversion of a hip point from occurring when the rehabilitating person is walking; a foot support which comes into contact with the foot of the rehabilitating person; an ankle joint for connecting the foot support and the second auxiliary link member; and a second spring coupled to a side of the foot support to compensate an entropion angle.
摘要:
A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.
摘要:
The invention relates to a method for controlling walking of humanoid bipedal walking robot. More specifically, the invention comprises steps of designing a zero momentum position (ZMP) of a robot for the ground surface (a); calculating trajectories of a center of gravity (COG) of the robot along with the trajectory of the ZMP (b); calculating an angular velocity of driving motors of two feet, which has the robot walk according to the trajectory of the ZMP (c); and controlling walking of the robot by driving the driving motors according to the angular velocity of the driving motors calculated above. The robot walking control method according to the invention has stability against disturbances.
摘要:
A method of manufacturing photonic band gap structures operable in the optical spectrum has been presented. The method comprises the steps of creating a patterned template for an elastomeric mold, fabricating an elastomeric mold from poly-dimethylsiloxane (PDMS) or other suitable polymer, filling the elastomeric mold with a second polymer such as epoxy or other suitable polymer, stamping the second polymer by making contact with a substrate or multilayer structure, removing the elastomeric mold, infiltrating the multilayer structure with ceramic or metal, and heating the multilayer structure to remove the second polymer to form a photonic band gap structure.