摘要:
A color detection active pixel sensor. The color detection active pixel sensor includes a substrate. A diode is electrically connected to a first doped region of the substrate. The diode conducts charge when the diode receives photons having a first range of wavelengths. The substrate includes a second doped region. The second doped region conducts charge when receiving photons having a second range of wavelengths. The photons having the second range of wavelengths passing through the diode substantially undetected by the diode. The substrate can include a doped well within the substrate. The doped well conducts charge when receiving photons having a third range of wavelengths. The photons having the third range of wavelengths pass through the diode substantially undetected by the diode.
摘要:
Small feature CMOS defect analysis of SRAM circuits is made less time consuming with the inclusion of an in-circuit test connection which is brought to external contact pads. External measurement and circuit forcing are accomplished via the external contact pads. A fault library for comparison to automated tests results provides faster resolution of process defects.
摘要:
An image sensor and method of manufacture therefor includes a substrate having pixel control circuitry. Dielectric layers on the substrate include interconnects in contact with the pixel control circuitry and with pixel electrodes. An intrinsic layer is over the pixel electrodes and has a gap provided between the pixel electrodes. An intrinsic-layer covering layer is over the intrinsic layer and a transparent contact layer over the intrinsic-layer covering and the interconnects. The intrinsic, intrinsic-layer covering, and transparent contact layer interact in different combinations to provide a pixel isolation system for the image sensor.
摘要:
A method of annealing a wafer in a rapid thermal annealer is disclosed. The walls of the chamber are heated more rapidly than is the wafer. In a preferred embodiment, the interior of the graphite walls of the annealer is lined with a molybdenum sheet which is open toward the lamps that heat the chamber. Thus, the walls heat very rapidly to a temperature greater than the condensation point of arsenic, preventing arsenic condensation on the walls. Effective annealing can be achieved at wall temperatures in the range of 500.degree. to 600.degree. C. Prior to the heat ramp up, an arsenic atmosphere, preferably trimethylarsenic (TMAs) at an appropriate overpressure is introduced. This overpressure is maintained both during the heating and cooling cycle. By the use of this method, the exposure time for annealing can be reduced from prior times of as much as 20 minutes to as little as 10 seconds.