摘要:
An image sensor and method of manufacture therefor includes a substrate having pixel control circuitry. Dielectric layers on the substrate include interconnects in contact with the pixel control circuitry and with pixel electrodes. An intrinsic layer is over the pixel electrodes and has a gap provided between the pixel electrodes. An intrinsic-layer covering layer is over the intrinsic layer and a transparent contact layer over the intrinsic-layer covering and the interconnects. The intrinsic, intrinsic-layer covering, and transparent contact layer interact in different combinations to provide a pixel isolation system for the image sensor.
摘要:
Semiconductor-on-insulator (SOI) devices and associated methods are provided. In one aspect, for example, a method for making a SOI device can include forming a device layer on a front side of a semiconductor layer, bonding a first substrate to the front side of the device layer, processing the semiconductor layer on a back side opposite the device layer to form a processed surface, and bonding a second substrate to the processed surface. In some aspects, the method can further include removing the first substrate from the front side to expose the device layer. In one aspect, forming the device layer can include forming optoelectronic circuitry at the front side of the semiconductor layer.
摘要:
A backside illuminated image sensor includes a substrate, a backside passivation layer disposed on backside of the substrate, and a transparent conductive layer disposed on the backside passivation layer.
摘要:
Two steps of planarizing are performed during isolation trench fabrication resulting in a more uniform planarization of an integrated circuit substrate. A protective layer deposition and a planarizing step are performed prior to a final planarizing step. Applying protective material fills in a portion of recesses in a dielectric layer overlying isolation trench areas. A first global planarization process eliminates narrower recesses and shallows out deeper recesses without causing dishing in the dielectric material. Much of the protective material is removed by the first global planarization process. The remaining protective material is stripped. A final global planarization process then is performed which removes dielectric material outside of the trench areas. A well-defined border of the trenches results.
摘要:
3D sensors, systems, and associated methods are provided. In one aspect, for example, a monolithic 3D sensor for detecting infrared and visible light can include a semiconductor substrate having a device surface, at least one visible light photodiode formed at the device surface and at least one 3D photodiode formed at the device surface in proximity to the at least one visible light photodiode. The device can further include a quantum efficiency enhanced infrared light region functionally coupled to the at least one 3D photodiode and positioned to interact with electromagnetic radiation. In one aspect, the quantum efficiency enhanced infrared light region is a textured region located at the device surface.
摘要:
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
摘要:
Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
摘要:
A backside illuminated image sensor includes a substrate, a backside passivation layer disposed on backside of the substrate, and a transparent conductive layer disposed on the backside passivation layer.
摘要:
A pixel including a substrate of a first conductivity type and having a surface, a photodetector of a second conductivity type that is opposite the first conductivity type, a floating diffusion region of the second conductivity type, a transfer region between the photodetector and the floating diffusion, a gate positioned above the transfer region and partially overlapping the photodetector, and a pinning layer of the first conductivity type extending at least across the photodetector from the gate. A channel implant of the first conductivity type extending from between a midpoint of the transfer gate and the floating diffusion to at least across the photodiode and having a dopant concentration such that a dopant concentration of the transfer region is greater proximate to the photodetector than the floating diffusion, and wherein a peak dopant concentration of the channel implant is at a level and at a depth below the surface such that a partially-buried channel is formed in the transfer region between the photodiode and floating diffusion when the transfer gate is energized.
摘要:
3D sensors, systems, and associated methods are provided. In one aspect, for example, a monolithic 3D sensor for detecting infrared and visible light can include a semiconductor substrate having a device surface, at least one visible light photodiode formed at the device surface and at least one 3D photodiode formed at the device surface in proximity to the at least one visible light photodiode. The device can further include a quantum efficiency enhanced infrared light region functionally coupled to the at least one 3D photodiode and positioned to interact with electromagnetic radiation. In one aspect, the quantum efficiency enhanced infrared light region is a textured region located at the device surface.