Abstract:
According to an aspect, a display device includes: an image display panel; and a plurality of signal processing circuits that are responsible for respective regions in the image display panel, that convert an input value of an input HSV color space of an input signal to each of their own responsible regions into an extension value of an extended HSV color space to generate an output signal of the extension value for the image display panel. The signal processing circuits decide an extension coefficient αA for the image display panel in its entirety in a cooperative manner. The signal processing circuit, regarding its own responsible region, calculates an output signal of each of a first sub-pixel, a second sub-pixel, third sub-pixel, and a fourth sub-pixel.
Abstract:
An image pickup device capable of stably detecting an object irrespective of use conditions while reducing manufacturing costs is provided. When illumination light from a backlight is emitted to a proximity object from an I/O display panel, an electric charge is accumulated in image pickup pixels in accordance with total light amount, including reflected light originating from the backlight and external environment light. Moreover, when the illumination light is not emitted, a discharging electric charge is released from the image pickup pixels in accordance with the amount of environment light. Thereby, an environment light component is subtracted from an image pickup signal obtained from each of the image pickup pixels, so object information about the proximity object is obtained without influence of the environment light. Moreover, in a light reception drive circuit, fewer frame memories for producing a picked-up image from the image pickup signal are necessary.
Abstract:
An image display apparatus includes: a grayscale conversion device configured to perform grayscale conversion processing on input data to output data; and a display device configured to operate in accordance with the output data to display an image by pixels arranged in a two-dimensional matrix state, wherein the grayscale conversion device is configured to perform first error diffusion processing for converting N0-grayscale input data into N1-grayscale data (2
Abstract:
Disclosed herein is an image processor including: a random number sequence generation section adapted to generate a random number sequence; a random number-superimposed luminance variable generation section adapted to generate a random number-superimposed luminance variable by superimposing the random number sequence on a luminance variable; and a random number-superimposed image signal generation section adapted to generate a random number-superimposed image signal by superimposing the random number-superimposed luminance variable on an image signal.
Abstract:
The touch sensor device and the display device include: a panel unit having a touch detection area in which a plurality of drive electrodes extend in an X-direction, a plurality of detection electrodes extend in a Y-direction, and a plurality of detection units each composed of a pair of the drive electrode and the detection electrode are formed in a matrix pattern; the drive electrodes each having a width forming two detection units in the Y-direction; and regions each formed by the intersection between one drive electrode and first to fourth detection electrodes. In this region, detection regions having a first sensitivity in which first to fourth detection units are provided and non-detection regions having a second sensitivity are alternately disposed. For example, the detection electrodes have different shapes between the detection region and the non-detection region.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
According to an aspect, a display device includes a pixel including a first sub-pixel configured to emit light having a peak in a spectrum of red, a second sub-pixel configured to emit light having a peak in a spectrum of green, and a third sub-pixel configured to emit light having a peak in a spectrum of blue. The first sub-pixel, the second sub-pixel, and the third sub-pixel are inorganic light-emitting diodes. A light emission intensity of the second sub-pixel is increased at a predetermined ratio with respect to a light emission intensity of the first sub-pixel when the first sub-pixel emits light at a light emission intensity within a low-luminance range equal to or lower than a predetermined level of luminance.
Abstract:
According to an aspect, a display device includes: a display panel including a display area provided with a plurality of pixels; and a light source configured to emit light to the display panel. Writing periods and lighting periods are alternately provided in one frame period for at least one color. Each writing period is a period in which part of a pixel signal is written to a corresponding one of the pixels. Each lighting period is a period in which light is emitted to the pixel after a corresponding one of the writing periods. A light amount in at least one of the lighting periods is larger than a light amount in other lighting periods.
Abstract:
A display device is provided and including a backlight device including a plurality of light sources; a display panel disposed to oppose the backlight device and incline with respect to a direction perpendicular to an optical axis of the backlight device; a first diffusion plate between the display panel and the backlight device; and a second diffusion plate arranged at a predetermined angle with respect to the first diffusion plate.
Abstract:
A display device includes: a display panel to display a frame image by arranging line images; and a light source. One frame period includes sub-frame periods each including a writing period and a display period. The line images are written in units of a predetermined number of lines during the writing period. The line images that are written at a time in units of the predetermined number of lines are the same image. In two continuous sub-frame periods in the one frame period, when a line image to be written during the writing period in a preceding sub-frame period differs from a line image to be written during the writing period in a subsequent sub-frame period, a start position of the writing period in the preceding sub-frame period and a start position of the writing period in the subsequent sub-frame period are shifted by one line from each other.