Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
A portable exhaust gas flow sensor includes a tube for coupling to an exhaust pipe of a vehicle and having a thin screen or similar flow restricting element to induce a pressure drop based on the exhaust gas flow with an upstream port and a downstream port relative to the flow restricting element connected to a differential pressure transducer. A thermocouple extends through a temperature port to measure exhaust gas temperature flowing through the tube. A processor in communication with the thermocouple and the differential pressure transducer determines the exhaust gas flow based on the differential pressure and the temperature. The flow restricting element includes sufficient spaces to resist formation of condensation and minimize added back pressure while providing an accurately measurable pressure drop for flows ranging from idle to full throttle.
Abstract:
A metal-modified alkylation catalyst including a metal/zeolite is provided where the metal is one or two selected from the group consisting of yttrium and a rare earth of the lanthanide series other than cerium. Where two metals are used, one may be Ce or La. The metal-promoted zeolite is useful as a molecular sieve aromatic alkylation catalyst for the production of ethylbenzene by the ethylation of benzene in the liquid phase or critical phase. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 10-60 wt % of the ethylbenzene.
Abstract:
A method for the dehydrogenation of hydrocarbons to alkenes, such as n-pentene to piperylene and n-butane to butadiene at pressures less than atmospheric utilizing a dehydrogenation catalyst are disclosed. Embodiments involve operating the dehydrogenation reactor at a pressure of 1,000 mbar or less.
Abstract:
A portable exhaust gas flow sensor includes a tube for coupling to an exhaust pipe of a vehicle and having a thin screen or similar flow restricting element to induce a pressure drop based on the exhaust gas flow with an upstream port and a downstream port relative to the flow restricting element connected to a differential pressure transducer. A thermocouple extends through a temperature port to measure exhaust gas temperature flowing through the tube. A processor in communication with the thermocouple and the differential pressure transducer determines the exhaust gas flow based on the differential pressure and the temperature. The flow restricting element includes sufficient spaces to resist formation of condensation and minimize added back pressure while providing an accurately measurable pressure drop for flows ranging from idle to full throttle.
Abstract:
A process for the production of ethylbenzene by the ethylation of benzene in the critical phase over a molecular sieve aromatic alkylation catalyst. An aromatic feedstock having a benzene content of at least 90 wt. % is supplied into a reaction zone into contact with a zeolite beta alkylation catalyst having a silica/alumina ratio within the range of 20-500, specifically 50-150. The alkylation catalyst is a zeolite beta specifically a lanthanum-modified zeolite beta. Ethylene is supplied to the reaction zone to provide a benzene/ethylene mole ratio of 1-15. The reaction zone is operated under conditions in which benzene is in the supercritical phase to produce an alkylation product containing ethylbenzene as a primary product with heavier alkylated by-products of no more than 60 wt. % of the ethylbenzene. The alkylation product is recovered from the reaction zone and supplied to a separation and recovery zone to separate ethylbenzene from a polyalkylated component including diethylbenzene. At least a portion of the polyalkylated component is supplied to a transalkylation reaction zone containing a molecular sieve transalkylation catalyst. The transalkylation reaction zone contains a zeolite Y catalyst and is operated under liquid phase conditions.
Abstract:
There is provided a mechanism for gripping and retaining flat or curved panels or the like in a generally planar arrangement. More specifically, there is provided a clamping cartridge which includes a plurality of rotatable pin pairs which operate to engage the edges of the panels and apply a clamping force thereto. Preferably, the rotatable pin pairs are resiliently rotatable so that the clamping force which can be applied to the panel edge may be varied. The resilient rotation of the pin pairs may be effected through the use of a spring or other resilient member on which an actuator is operable for ultimately rotating the pin pairs. The pins of each pin pair, which are normally aligned generally perpendicularly to the edge of the panel when in their open-most panel receiving and releasing position, are rotatable into engagement with the edge of the panel so as to clamp the edge therebetween. Further operation of the actuator causes the clamping force to vary the clamping force on account of the spring member without imparting further rotation. The resilient rotation of the pin pairs permits panels of varying thickness and/or multiple panels to be clamped by the same cartridge and permits operability of the device when not all of the pin pairs are used to retain a panel. The clamping force increases with thickness of panel(s) due to increased compression of spring member. One or more such clamping cartridges can be used in a variety of storage and/or packaging systems.
Abstract:
Methods and processes for reducing alkylation catalyst poisoning are described herein. Such methods generally include contacting ethylbenzene with a dehydrogenation catalyst to form a dehydrogenation output stream within a dehydrogenation system and passing at least a portion of the dehydrogenation output stream to an alkylation system, wherein the at least a portion of the dehydrogenation output stream contacts an alkylation catalyst. The at least a portion of the dehydrogenation output stream includes a level of impurities resulting from offtest and wherein the level of impurities is sufficiently low to result in essentially no observed effect on the alkylation catalyst life in comparison with an alkylation system feed absent offtest.
Abstract:
Alkylation processes are described herein. The alkylation process generally includes contacting an input stream including benzene with an alkylation catalyst and an alkylating agent to form an alkylation output stream including ethylbenzene. The alkylation process further includes contacting at least a portion of the alkylation output stream with a transalkylation catalyst and a benzene source to form a transalkylation output stream, wherein the benzene source is selected to minimize the amount of alkylation catalyst poisons contacting the alkylation catalyst.
Abstract:
A process for the dehydrogenation of a C2 or C3 alkyl aromatic compound to a corresponding vinyl aromatic compound in a tubular reactor incorporating a spiral flow path. Preferred embodiments of the invention provide processes for the production of styrene or divinylbenzene by the catalytic dehydrogenation of ethylbenzene or diethylbenzene, respectively. A feedstock containing a C2 or C3 alkyl aromatic and steam is supplied into the inlet of a tubular reactor containing a dehydrogenation catalyst and comprising a hydrogen permeable outer wall. The alkyl aromatic compound is dehydrogenated to a corresponding vinyl aromatic compound with the attendant production of hydrogen. The feedstock and products of the dehydrogenation reactor are flowed along a longitudinal spiral flow path providing for an outward radial flow of hydrogen to provide a pressure gradient through the hydrogen permeable outer wall of the reactor with the flow of hydrogen therethrough. Hydrogen is removed from the outer wall of the reactor. The resulting vinyl aromatic product is recovered from the tubular reactor.