Abstract:
A catalyst includes: (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
An aerial advertising device for providing predictable and consistent oscillations to a banner towed behind an aircraft. The aerial advertising device may be disposed at the bottom of the leading edge of a banner. The device may generally comprise a weight box disposed above a wind box. The device may be rotatable about the leading edge or extension, wherein the range of motion of such rotation may be limited by a restriction arm preventing further motion of the device relative to the leading edge. Such rotation may allow the inside walls of the wind box to transfer the applied wind force to the rotation of the device and thereby the rotation of the leading edge of the banner. The weight box may further comprise a horizontal translation arm upon which a slidable weight may slide as the translation arm is moved into greater angular positions relative to horizontal.
Abstract:
The method of the present inventive concept is configured to utilize Operating System data structures related to memory-mapped binaries to reconstruct processes. These structures provide a system configured to facilitate the acquisition of data that traditional memory analysis tools fail to identify, including by providing a system configured to traverse a virtual address descriptor, determine a pointer to a control area, traverse a PPTE array, copy binary data identified in the PPTE array, generate markers to determine whether the binary data is compromised, and utilize the binary data to reconstruct a process.
Abstract:
A group V metal/rhenium-modified molecular sieve catalyst can be used in hydrocarbon conversion reactions. Embodiments can provide a toluene conversion of at least 30 wt % with selectivity to benzene above 40 wt % and to xylenes above 40 wt % and non-aromatics selectivity of less than 2.0 wt %.
Abstract:
A method for the dehydrogenation of hydrocarbons to alkenes, such as n-pentene to piperylene and n-butane to butadiene at pressures less than atmospheric utilizing a dehydrogenation catalyst are disclosed. Embodiments involve operating the dehydrogenation reactor at a pressure of 1,000 mbar or less.
Abstract:
A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in one or more reactors to form a product stream comprising styrene and/or ethylbenzene where the catalyst time on stream prior to regeneration is less than 1 hour.
Abstract:
A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in one or more reactors to form a product stream comprising styrene and/or ethylbenzene where the catalyst time on stream prior to regeneration is less than 1 hour.
Abstract:
A group V metal/rhenium-modified molecular sieve catalyst can be used in hydrocarbon conversion reactions. Embodiments can provide a toluene conversion of at least 30 wt % with selectivity to benzene above 40 wt % and to xylenes above 40 wt % and non-aromatics selectivity of less than 2.0 wt %.
Abstract:
A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in one or more reactors to form a product stream comprising styrene and/or ethylbenzene where the catalyst time on stream prior to regeneration is less than 1 hour.
Abstract:
A nickel-titanium-rare earth (Ni—Ti-RE) alloy comprises nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, boron at a concentration of up to about 0.1 at. %, with the balance of the alloy being titanium. In addition to enhanced radiopacity compared to binary Ni—Ti alloys and improved workability, the Ni—Ti-RE alloy preferably exhibits superelastic behavior. A method of processing a Ni—Ti-RE alloy includes providing a nickel-titanium-rare earth alloy comprising nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, the balance being titanium; heating the alloy in a homogenization temperature range below a critical temperature; and forming spheroids of a rare earth-rich second phase in the alloy while in the homogenization temperature range.