摘要:
A ternary V—Ti—P mixed oxide is shown to catalytically dehydrate 2-methyl-tetrahydrofuran in high conversion to give piperylene, in good yield. Volatile products collected from this reaction contain piperylene in concentrations as high as 80 percent by weight. Dehydration of glycerol to acrolein in high conversion and moderate selectivity is also demonstrated. The catalyst is also shown to dehydrate other alcohols and ether substrates. The catalyst is resistant to deactivation and maintains activity between runs.
摘要:
Described is a method of making sorbic acid, pentadiene, or 3-penten-2-one. The method includes partially hydrogenating 4-hydroxy-6-methyl-2-pyrone (HMP) to yield 5,6-dihydro-4-hydroxy-6-methyl-2H-pyran-2-one (4-DHMMP). Then, if 3-penten-2-one is desired, thermally decomposing the 4-DHMMP to yield 3-penten-2-one. If sorbic acid or pentadiene are desired, the 4-DHMMP is hydrogenated to yield 4-hydroxy-6-methyltetrahydro-2-pyrone (4-HMTHP). The 4-HMTHP is then dehydrated by contacting it with a solid acid catalyst to yield parasorbic acid (PSA). The PSA can then be ring-opened by contacting it with a solid acid catalyst. The reaction conditions of the ring-opening reaction can be controlled to yield sorbic acid and/or pentadiene.
摘要:
A method for the dehydrogenation of hydrocarbons to alkenes, such as n-pentene to piperylene and n-butane to butadiene at pressures less than atmospheric utilizing a dehydrogenation catalyst are disclosed. Embodiments involve operating the dehydrogenation reactor at a pressure of 1,000 mbar or less.
摘要:
A ternary V—Ti—P mixed oxide is shown to catalytically dehydrate 2-methyl-tetrahydrofuran in high conversion to give piperylene, in good yield. Volatile products collected from this reaction contain piperylene in concentrations as high as 80 percent by weight. Dehydration of glycerol to acrolein in high conversion and moderate selectivity is also demonstrated. The catalyst is also shown to dehydrate other alcohols and ether substrates. The catalyst is resistant to deactivation and maintains activity between runs.
摘要:
Oils from plants and animal fats are hydrolyzed to fatty acids for a Kolbe reaction. The invention relates to a high productivity Kolbe reaction process for electrochemically decarboxylating C4-C28 fatty acids using small amounts of acetic acid to lower anodic passivation voltage and synthesizing C6-C54 hydrocarbons. The C6-C54 undergo olefin metathesis and/or hydroisomerization reaction process to synthesize heavy fuel oil, diesel fuel, kerosene fuel, lubricant base oil, and linear alpha olefin products useful as precursors for polymers, detergents, and other fine chemicals.