Abstract:
According to an aspect, a display device includes: an image display panel in which pixel units each including a first pixel including a first, a second, and a third sub pixels, and a second pixel including the first, the second, and a fourth sub pixels are periodically arranged; and a signal processing unit. The signal processing unit obtains a corrected output signal of the third sub pixel of the first pixel based on an input signal of the third sub pixel of the first pixel and an input signal of the third sub pixel of the second pixel of the same pixel unit, and obtains a corrected output signal of the fourth sub pixel of the second pixel based on an input signal of the fourth sub pixel of the first pixel of the same pixel unit and an input signal of the fourth sub pixel of the second pixel.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.
Abstract:
According to an aspect, a display device includes: a display unit including a plurality of pixels arranged therein, the pixels including a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel; and a signal processing unit that calculates output signals corresponding to the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel based on input signals corresponding to the first sub-pixel, the second sub-pixel, and the third sub-pixel. The signal processing unit calculates each of the output signals based on a result obtained by extracting and analyzing only information on a certain region within one frame from the input signals.
Abstract:
An image display device includes an image display panel configured of pixels made up of first, second, third, and fourth sub-pixels being arrayed in a two-dimensional matrix shape, and a signal processing unit into which an input signal is input and from which an output signal based on an extension coefficient is output, and causes the signal processing unit to obtain a maximum value of luminosity with saturation S in the HSV color space enlarged by adding a fourth color, as a variable, and to obtain a reference extension coefficient based on the maximum value, and further to determine an extension coefficient at each pixel from the reference extension coefficient, an input signal correction coefficient based on the sub-pixel input signal values at each pixel, and an external light intensity correction coefficient based on external light intensity.
Abstract:
A method of driving an image display apparatus which includes an image display panel having a plurality of pixels arrayed in a two-dimensional matrix and each configured from a first subpixel for displaying a first primary color, a second subpixel for displaying a second primary color, a third subpixel for displaying a third primary color and a fourth subpixel for displaying a fourth color, and a signal processing section. The signal processing section is capable of calculating a first subpixel output signal, a second subpixel output signal, a third subpixel output signal, and a fourth subpixel output signal. The method includes a step of calculating a maximum value (Vmax(S)) of brightness, a saturation (S) and brightness (V(S)), and determining the expansion coefficient (α0).
Abstract:
A method of driving an image display apparatus which includes an image display panel having a plurality of pixels arrayed in a two-dimensional matrix and each configured from a first subpixel for displaying a first primary color, a second subpixel for displaying a second primary color, a third subpixel for displaying a third primary color and a fourth subpixel for displaying a fourth color, and a signal processing section. The signal processing section is capable of calculating a first subpixel output signal, a second subpixel output signal, a third subpixel output signal, and a fourth subpixel output signal. The method includes a step of calculating a maximum value (Vmax(S)) of brightness, a saturation (S) and brightness (V(S)), and determining the expansion coefficient (α0).
Abstract:
Second barrier electrodes are arranged under first barrier electrodes so as to fill gaps between the first barrier electrodes, while an insulating layer is located between the first barrier electrodes and the second barrier electrodes. The number of first barrier electrodes and the number of second barrier electrodes in each barrier pitch are 6 or more. The positions of the barriers formed by the first barrier electrodes and the second barrier electrodes are controlled by the reception of a signal representing detected positions of the eyes of a viewer. If pitches of the first barrier electrodes are defined as BE, and the widths of regions in which the first barrier electrodes are overlapped with the second barrier electrodes are defined as BA, a ratio BA/BE of the widths BA to the pitches BE are 0.3 or smaller. This configuration can suppress the occurrence of moire.
Abstract:
According to an aspect, an image display panel includes: a first pixel including (d−1) sub pixels, which are first to (d−2)-th sub pixels and a (d−1)-th sub pixel, and a second pixel that is adjacent to the first pixels and includes (d−1) sub pixels, which are first to (d−2)-th sub pixels and a d-th sub pixel. A region of the image display panel includes a first pixel display region and a second pixel display region. The first to (d−2)-th sub pixels of the first pixel, one part of the (d−1)-th sub pixel, and one part of the d-th sub pixel are arranged in the first pixel display region. The first to (d−2)-th sub pixels of the second pixel, the other part of the (d−1)-th sub pixel, and the other part of the d-th sub pixel are arranged in the second pixel display region.
Abstract:
In a display device, pixels each including first to fourth subpixels that respectively display first to third primary colors and fourth color are arranged on an image display panel. A lighting unit emits light to the panel from the rear thereof. A control unit calculates a required luminance value for each block of the display surface of the panel based on an input image signal, determines a light source lighting amount of the lighting unit based on luminance distribution information on the lighting unit so as to satisfy the required luminance value, generates luminance information on each pixel based on the luminance distribution information and light source lighting amount, generates an output image signal that drives the subpixels based on the luminance information and input image signal, controls the lighting unit by the light source lighting amount, and controls the panel by the output image signal.
Abstract:
According to an aspect, a display device includes a signal processing unit that converts an input value of a input HSV color space of an input signal into an extension value of an extended HSV color space extended with a first color, a second color, a third color, and a fourth color to generate an output signal; performs peaking processing for analyzing the input signal of the imaged image to detect a focusing region; and determines whether to perform display in a peaking mode for highlighting the focusing region. When it is determined to perform display in the peaking mode, the signal processing unit increases a value of the output signal of the fourth color of a pixel in an outer edge of the focusing region.