Abstract:
A signal processor of a display device includes: a light emission value calculating unit that calculates a light emission value; a chunk determining unit that determines whether pixels within a predetermined luminance value range are continuously present and determines an area of the continuous pixels as a chunk; a maximum luminance value detecting unit that detects a maximum luminance value inside the chunk in one of the partial areas; a luminance gain value determining unit that determines a luminance gain value based on the maximum luminance value such that a corrected light emission value that is a value acquired by multiplying the light emission value by the luminance gain value is a value of an upper limit emission value or less; and a light emission control unit that causes the light source units to emit light based on the corrected light emission value.
Abstract:
According to an aspect, the liquid crystal display device includes: an expansion coefficient determining unit that determines an expansion coefficient of each of partial areas based on a signal level of the first, the second, and the third colors; a luminance level determining unit that determines a luminance level of each partial area based on the signal level; a signal processing unit that uses the expansion coefficient to expand the signal level; and a light source control unit that controls brightness of a light source based on the expansion coefficient and the luminance level. The light source can change the brightness of the partial areas individually. The light source control unit controls the light source such that the brightness of the light source in a partial area having a luminance level equal to or higher than a predetermined threshold is higher than the brightness based on the expansion coefficient.
Abstract:
According to one embodiment, a light source device includes a plurality of light emitting elements including at least first and second light emitting elements, lightguide, first circuit, second circuit, and controller. The lightguide includes a first surface on which light from light emitting elements is incident and a second surface through which the light exits. The first circuit connects light emitting elements in series. The second circuit can bypass each of light emitting elements. The controller turns on light emitting elements using the first circuit if light emitting elements function normally, and if one of light emitting elements functions abnormally, the controller turns on the light emitting element functioning normally using the second circuit.
Abstract:
An image display device includes a first pixel data calculator calculating first pixel data for a pixel of attention based on a first error value for a pixel adjacent thereto in the same error diffusion block; a second pixel data calculator calculating second pixel data for the pixel of attention based on a corrected error value for the adjacent pixel; a first error value calculator calculating the first error value based on the first pixel data; a second error value calculator calculating a second error value based on the second pixel data; and a corrected error value calculator calculating the corrected error value by correcting the second error value in a direction in which the second error value approaches the first error value in accordance with whether the pixel of attention is located within a predetermined range from a border among a plurality of error diffusion blocks.
Abstract:
A display device includes: an image display unit that includes an image display region; a plurality of light sources that are arranged corresponding to a plurality of partial regions included in the image display region and irradiate the partial regions with light; a light amount correction processing unit that detects that the partial regions are non-display regions in which no image is displayed, and corrects a light amount of the light sources based on a predetermined threshold when the partial regions adjacent to each other are continuous non-display regions; and a light source control unit that controls the light amount of the light sources.
Abstract:
According to an aspect, a display device includes an image display panel; a planar light source including a light guide plate and an edge-lit light source that has light sources; and a controller. The controller sets luminance determination blocks by virtually dividing the image display panel in a light-source-arrangement-direction, identifies a luminance determination block with a highest luminance in the incidence direction, among luminance determination blocks at a same position in the light-source-arrangement-direction, identifies a luminance determination block the luminance of which is to be corrected by referring to luminance information of the light sources, and controls a light quantity of each of the light sources in such a manner that luminance of the identified luminance determination block is achieved.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
In a display device, pixels each including first to fourth subpixels that respectively display first to third primary colors and fourth color are arranged on an image display panel. A lighting unit emits light to the panel from the rear thereof. A control unit calculates a required luminance value for each block of the display surface of the panel based on an input image signal, determines a light source lighting amount of the lighting unit based on luminance distribution information on the lighting unit so as to satisfy the required luminance value, generates luminance information on each pixel based on the luminance distribution information and light source lighting amount, generates an output image signal that drives the subpixels based on the luminance information and input image signal, controls the lighting unit by the light source lighting amount, and controls the panel by the output image signal.
Abstract:
According to an aspect, a display device includes: a display panel including a display area provided with pixels; an illuminator including an illumination area configured to emit light to the display panel such that the display area is illuminated from one surface side of the display panel; and a liquid crystal dimming panel overlapping the display panel, and including a dimming area configured to be adjusted in transmittance of the light emitted to another surface side of the display panel through the display area. The illumination area includes first segment regions configured such that luminance levels thereof are individually adjusted. The dimming area includes second segment regions configured such that the light transmittances thereof are individually adjusted. Each of the first segment regions overlaps more than one of the second segment regions. Each of the second segment regions overlaps more than one of the pixels.