摘要:
A method for manufacturing an MEMS device is provided. The method includes steps of a) providing a first substrate having a concavity located thereon, b) providing a second substrate having a connecting area and an actuating area respectively located thereon, c) forming plural microstructures in the actuating area, d) mounting a conducting element in the connecting area and the actuating area, e) forming an insulating layer on the conducting element and f) connecting the first substrate to the connecting area to form the MEMS device. The concavity contains the plural microstructures.
摘要:
A method of manufacturing an optical component is provided. The method comprises steps of providing a first liquid; providing a fluid, disposed above the first liquid, wherein an interface exists between the first liquid and the fluid; providing a polymer precursor at the interface; and solidifying the polymer precursor so as to form the optical component made by a polymer.
摘要:
A method for fabricating micromachined structures is provided. A structure including a dielectric layer, a metal layer and a passivation layer is formed, wherein the dielectric layer has a via thereon. An etching window is formed on the passivation layer. An etching solution is poured into the via through the etching window to perform a process of etching. After etching, the etching solution is removed and the passivation layer is removed. Finally, the structure is etched again to form the micromachined structure.
摘要:
A method and/or an apparatus for determining the dynamic response of a microstructure is disclosed. A piezocomposite ultrasonic transducer device formed of a piezoelectric material and a polymer material around said piezoelectric ceramic material is used to provide a pulsed bulk acoustic wave having a bandwidth of at least 20% to excite a microstructure. The microstructure is attached onto the transducer, and the pulsed bulk acoustic wave generated through the transducer in response to a pulse voltage excites the microstructure to vibrate. Meanwhile, the dynamic response of the microstructure can be monitored by a laser Doppler vibrometer, and shown by an oscilloscope.
摘要:
An actuating mechanism for rotating a micro-mirror is disclosed. The actuating mechanism includes a first linking rod consisting of a first and a second portions, a second linking rod consisting of a third and a fourth portions, a first fulcrum positioned between the first and second portions, and a second fulcrum positioned at one side of the fourth portion opposite to the third portion. The first and third portions are flexibly connected to a shaft that the micro-mirror rotates with, and the second and fourth portions are coupled to respective actuators. When actuating forces are applied to move the second and fourth portions, the first and third portions are levered to rotate the shaft and thus the micro-mirror due to the effect of the fulcrums.
摘要:
A micromachined structure includes a substrate and a suspended structure. The substrate has a cavity formed thereon. The suspended structure is formed on the cavity of the substrate. The suspended structure includes a first metal layer, a second metal layer, and a first dielectric layer positioned between the first and second metal layers, wherein the first dielectric layer has a first opening in communication with the cavity through an opening formed in the first metal layer.
摘要:
A method for manufacturing an MEMS device is provided. The method includes steps of a) providing a first substrate having a concavity located thereon, b) providing a second substrate having a connecting area and an actuating area respectively located thereon, c) forming plural microstructures in the actuating area, d) mounting a conducting element in the connecting area and the actuating area, e) forming an insulating layer on the conducting element and f) connecting the first substrate to the connecting area to form the MEMS device. The concavity contains the plural microstructures.
摘要:
A method for fabricating micromachined structures is provided. A structure including a dielectric layer, a metal layer and a passivation layer is formed, wherein the dielectric layer has a via thereon. An etching window is formed on the passivation layer. An etching solution is poured into the via through the etching window to perform a process of etching. After etching, the etching solution is removed and the passivation layer is removed. Finally, the structure is etched again to form the micromachined structure.
摘要:
Disclosed is a novel three-axis capacitive-type accelerometer implemented on SOI wafer. The accelerometer consists of four springs, one proof mass, four pairs of gap-closing sensing electrodes (each pair of gap-closing sensing electrode containing one movable electrode and one stationary electrode), and several metal-vias as the electrical interconnections. The movable electrodes are on the proof mass, whereas the stationary electrodes are fixed to the substrate. The three-axis accelerometer has five merits. (1) The sensitivity of the accelerometer is improved since the proof-mass is increased by containing both device and handling silicon layers; (2) The sensitivity is also improved by the gap-closing differential capacitive sensing electrodes design; (3) The parasitic capacitance at bond pad is reduced by the existing of metal-vias between the device Si layer and handling Si layer; (4) The sensing gap thickness is precisely defined by the buried oxide of SOI wafer; (5) The stationary sensing electrodes anchored to the substrate also act as the limit stops to protect the accelerometer.
摘要:
A novel multifunctional nano-probe interface is proposed for applications in neural stimulation and detecting. The nano-probe interface structure consists of a carbon nanotube coated with a thin isolation layer, a micro-electrode substrate array, and a controller IC for neural cell recording and stimulation. The micro-electrode substrate array contains wires connecting the carbon nanotube with the controller IC, as well as microfluidic channels for supplying neural tissues with essential nutrition and medicine. The carbon nanotube is disposed on the micro-electrode substrate array made by silicon, coated with a thin isolation layer around thereof, and employed as a nano-probe for neural recording and stimulation.