摘要:
The present invention discloses a wearable device with combined sensing capabilities, which includes a wearable assembly and at least one multi-function sensor module. The wearable assembly is suitable to be worn on a part of a user's body. The wearable assembly includes at least one light-transmissible window. The multi-function sensor module is located inside the wearable assembly, for performing an image sensing function and an infrared temperature sensing function. The multi-function sensor module includes an image sensor module for sensing a physical or a biological feature of an object through the light-transmissible window by way of image sensing; and an infrared temperature sensor module for sensing temperature through the light-transmissible window by way of infrared temperature sensing.
摘要:
The present invention discloses a wearable device with combined sensing capabilities, which includes a wearable assembly and at least one multi-function sensor module. The wearable assembly is suitable to be worn on a part of a user's body. The wearable assembly includes at least one light-transmissible window. The multi-function sensor module is located inside the wearable assembly, for performing an image sensing function and an infrared temperature sensing function. The multi-function sensor module includes an image sensor module for sensing a physical or a biological feature of an object through the light-transmissible window by way of image sensing; and an infrared temperature sensor module for sensing temperature through the light-transmissible window by way of infrared temperature sensing.
摘要:
The present invention discloses a MEMS device with low substrate capacitive coupling effect, which is manufactured by a CMOS manufacturing process. The MEMS device includes: a substrate; at least one anchor, including an oxide layer connected with the substrate and a connecting structure on the oxide layer; and at least one micro-electro-mechanical structure, connected with the connecting structure. The oxide layer is made by a process step corresponding to a process step for making a field oxide which defines a device region of a transistor in the CMOS manufacturing process. The connecting structure has at least one layer which has an out-of-plane projected area that is smaller than an out-of-plane projected area of the oxide layer. The substrate has plural recesses at an upper surface of the substrate facing the micro-electro-mechanical structure.
摘要:
The invention provides a micro-electro-mechanical device having differential capacitor of corresponding sizes, which includes a substrate; a top fixed electrode; a bottom fixed electrode; a mass, having a top electrode and a bottom electrode, wherein the top electrodes form a top capacitor with the top fixed electrode and the bottom electrodes form a bottom capacitor with the bottom fixed electrode; a top fixed electrode extension wall having an upper end connected to the top fixed electrode and a lower end connected to the substrate; and a bottom fixed electrode extension wall having a lower end connected to the substrate through the bottom electrode, wherein the bottom fixed electrode extension wall has no upper end connected to the top fixed electrode, and total areas of the top fixed electrode extension wall and the top fixed electrode facing the mass are substantially equal to total areas of the bottom fixed electrode extension wall and the bottom fixed electrode facing the mass.
摘要:
A micro-electro-mechanical sensing device including a substrate, a semiconductor layer, a supporting pillar, a first suspended arm, a connecting member, a second suspended arm, and a proof mass is provided. The semiconductor layer is disposed on or above the substrate. The supporting pillar is disposed on or above the semiconductor layer. The first suspended arm is disposed on the supporting pillar. The supporting connects a portion of the first suspended arm. The connecting member directly or indirectly connects another portion of the first suspended arm. The second suspended arm has a first surface and a second surface opposite to the first surface. The connecting member connects a portion of the first surface. The proof mass connects the second suspended arm and it includes a portion of the second suspended arm as a portion of the proof mass. A method for manufacturing the device is also provided.
摘要:
The invention provides a micro-electro-mechanical device which includes a substrate, an electrode, and a diaphragm. The electrode includes plural vent holes. The diaphragm is disposed above and in parallel to the electrode, to form a capacitive sensor with the electrode. The diaphragm includes plural ribs protruding upward and/or downward from the diaphragm; the ribs are respectively disposed in correspondence to the plural vent holes and do not overlap nor contact the electrode. A method for making the micro-electro-mechanical device is also provided according to the present invention.
摘要:
The present invention discloses a MEMS sensing device which comprises a substrate, a MEMS device region, a film, an adhesive layer, a cover, at least one opening, and a plurality of leads. The substrate has a first surface and a second surface opposite the first surface. The MEMS device region is on the first surface, and includes a chamber. The film is overlaid on the MEMS device region to seal the chamber as a sealed space. The cover is mounted on the MEMS device region and adhered by the adhesive layer. The opening is on the cover or the adhesive layer, allowing the pressure of the air outside the device to pressure the film. The leads are electrically connected to the MEMS device region, and extend to the second surface.
摘要:
The present invention discloses a three-dimensional micro-electro-mechanical-system sensor. The sensor includes movable first electrodes, plural movable second electrodes, plural fixed third electrodes, and plural fixed fourth electrodes. The first electrodes and their adjacent third electrodes form at least one first capacitor and at least one second capacitor, and the second electrodes and their adjacent fourth electrodes form at least one third capacitor. The capacitance change of the first capacitor reflects the displacement of the proof mass along a first axis, the capacitance change of the second capacitor reflects the displacement of the proof mass along a second axis, and the capacitance change of the third capacitor reflects the displacement of the proof mass along a third axis. The first, second, and third axes define a three-dimensional coordinate system.
摘要:
The present invention discloses a MEMS sensing device which comprises a substrate, a MEMS device region, a film, an adhesive layer, a cover, at least one opening, and a plurality of leads. The substrate has a first surface and a second surface opposite the first surface. The MEMS device region is on the first surface, and includes a chamber. The film is overlaid on the MEMS device region to seal the chamber as a sealed space. The cover is mounted on the MEMS device region and adhered by the adhesive layer. The opening is on the cover or the adhesive layer, allowing the pressure of the air outside the device to pressure the film. The leads are electrically connected to the MEMS device region, and extend to the second surface.
摘要:
A working voltage switching system for a liquid crystal panel and a switching method thereof are presented. A timing controller of the panel acquires a liquid crystal enable signal to generate a clock signal, and a clock generator acquires the clock signal to control a liquid crystal control element of the liquid crystal panel, and acquires a basic signal supplied by a voltage supplier and a first signal provided by the voltage supplier and transferred by a switch, so as to adjust a signal difference of the clock signal. When a counter judges that the liquid crystal panel is enabled and a count condition is reached, a switch acts to transfer a second signal provided by the voltage supplier, and the clock signal is adjusted to satisfy a signal difference between the basic signal and the second signal.