Abstract:
A digital broadcasting system and a data processing method are disclosed. A time zone identifier is inserted into program table information of a broadcasting signal and the broadcasting signal is transmitted/received. The digital broadcasting system can calculate a local time of a region, in which the digital broadcasting system is located, using the time zone identifier. Accordingly, although the position of the digital broadcasting system is changed, it is possible to process the broadcasting signal related to the local time without an error.
Abstract:
Disclosed is a foundation container having a discharge pump therein, in which a contents container of stretchable material for storing cosmetic contents is coupled inside a container main body, and is fixed by a middle cap, and the contents container is provided with a rounded curved portion (42) at a lower edge thereof, an annular bent portion (43) at a lower center portion thereof, and spaced protrusions (44) protruding radially on an upper bottom surface, such that the contents container is evenly pressed from the rounded curved portion during the pumping operation of the pump, and even when the contents container is compressed, the gap is secured to discharge minimal contents, whereby the contents are smoothly discharged, and by the branch structure of the distribution plate and the discharge plate, it is possible to minimize the residual contents and improve use efficiency while discharging the cosmetic contents evenly.
Abstract:
A digital receiving system, and a method of processing data are disclosed. The digital receiving system includes a receiving unit, a known sequence detector, and a channel equalizer. The receiving unit receives a broadcast signal including mobile service data and main service data. The known sequence detector detects known data linearly inserted in a data group. The channel equalizer performs channel-equalizing on the received mobile service data using the detected known data.
Abstract:
A method of processing broadcast data includes performing RS (Reed-Solomon) encoding and CRC (Cyclic Redundancy Check) encoding on mobile service data to output an RS frame; dividing the RS frame into a plurality of portions; block processing data in one portion of the plurality of portions; mapping the block processed data in the one portion into at least one region of a data group that comprises a plurality of regions, and adding a first known data sequence, a plurality of second known data sequences, and a transmission parameter to the data group; and transmitting a transmission frame including the data group, wherein the transmission parameter is positioned between the first known data sequence and one of the plurality of second known data sequences, and the first known data sequence and the one of the plurality of second known data sequences differ from each other in length.
Abstract:
A method of processing a digital broadcast signal in a transmitter includes encoding signaling information including a transmission parameter channel, including transmission parameters and a fast information channel (FIC) including cross layer information for mobile service acquisition, and transmitting the broadcast signal including ensembles including the encoded signaling information. The FIC is divided into FIC segments, each FIC segment including a FIC segment header and a FIC segment payload. The FIC segment header includes type information indicating a type of the FIC segment, the FIC further including a first ensemble identifier identifying a specific ensemble including a service map table (SMT). The SMT includes a header including a second ensemble identifier corresponding to the first ensemble identifier, a payload including service acquisition information of the specific ensemble, and IP access information of a mobile service for acquiring an IP datagram of the mobile service from the specific ensemble.
Abstract:
A method of transmitting a broadcast signal includes performing Reed-Solomon (RS) frame encoding and Cyclic Redundancy Check (CRC) encoding on first mobile service data to form a primary RS frame and on second mobile service data to form a secondary RS frame; encoding on at least the first mobile service data or the second mobile service data, in serial concatenated convolution code (SCCC) block units; encoding signaling information including transmission parameters, the transmission parameters including SCCC encoding information and RS frame encoding information; formatting a data group including the encoded first mobile service data and second mobile service data, wherein the first mobile service data are included in a first region within the data group and the second mobile service data are included in a second region within the data group, the second region being different from the first region; and transmitting the broadcast signal including the formatted data group.
Abstract:
A digital television receiving system includes a first known data detector, a second known data detector, and a selector. The first known data detector detects a location of a first known data sequence in a broadcast signal by calculating a first correlation value between the broadcast signal and a first reference known data sequence. Similarly, the second known data detector detects a location of a second known data sequence in the broadcast signal by calculating a second correlation value between the broadcast signal and a second reference known data sequence. The selector selects the location information detected by one of the first and second known data detectors with a greater correlation value.
Abstract:
A digital broadcasting system and a method of processing data are disclosed, which are robust to error when mobile service data are transmitted. To this end, additional encoding is performed for the mobile service data, whereby it is possible to strongly cope with fast channel change while giving robustness to the mobile service data.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcast signal includes generating signaling data including a transmission parameter, wherein the transmission parameter includes a protocol version field identifying between a first transmission mode and a second transmission mode, forming a data group including mobile service data and the signaling data, forming mobile service data packets including the mobile service data and the signaling data in the data group, transmitting the digital broadcast signal including the data group.
Abstract:
A method for pretreating a biomass, in which a water-reactive anhydride contacts a biomass, is disclosed. The biomass is pretreated using internal heating by an exothermic reaction. Further, an apparatus for pretreating a biomass having a reaction part including an inlet part and an outlet part for the water-reactive anhydride is disclosed.