Abstract:
An impedance-assisted electrochemical method is employed for selectively removing certain material from a structure without significantly electrochemically removing certain other material of the same chemical type as the removed material.
Abstract:
Gated electron emitters are fabricated by processes in which charged particles are passed through a track layer (24, 48, or 144) to form charged-particle tracks (26.sub.1, 50.sub.1, or 146.sub.1). The track layer is etched along the tracks to create open spaces (28.sub.1, 52.sub.1, or 148.sub.1). Electron-emissive elements (30 or 142D) can then be formed at locations respectively centered on the open spaces after which a patterned gate layer (34B, 40B, or 158C) is provided. Alternatively, the open spaces in the track layer can be employed to etch corresponding apertures (54.sub.1) through an underlying non-insulating layer (46) which typically serves as the gate layer. An etch is performed through the apertures to form dielectric open spaces (56.sub.1, 96.sub.1, or 114.sub.1) in an insulating layer (24) that lies below the non-insulating layer. Electron-emissive elements (30B, 30/88D.sub.1, 98/102.sub.1, or 118.sub.1) can subsequently be provided, typically in the dielectric open spaces.
Abstract:
Gated electron emitters are fabricated by processes in which charged particles are passed through a track layer (24, 48, or 144) to form charged-particle tracks (26.sub.1, 50.sub.1, or 146.sub.1). The track layer is etched along the tracks to create open spaces (28.sub.1, 52.sub.1, or 148.sub.1). Electron-emissive elements (30 or 142D) can then be formed at locations respectively centered on the open spaces after which a patterned gate layer (34B, 40B, or 158C) is provided. Alternatively, the open spaces in the track layer can be employed to etch corresponding apertures (54.sub.1) through an underlying non-insulating layer (46) which typically serves as the gate layer. An etch is performed through the apertures to form dielectric open spaces (56.sub.1, 96.sub.1, or 114.sub.1) in an insulating layer (24) that lies below the non-insulating layer. Electron-emissive elements (30B, 30/88D.sub.1, 98/102.sub.1, or 118.sub.1) can subsequently be provided, typically in the dielectric open spaces.
Abstract:
A gated area field emitter is fabricated according to a process in which charged-particle tracks are utilized in creating small electron-emissive elements self-aligned to corresponding gate openings in the gate electrode. The electron-emissive elements can have various shapes, including (a) a pedestal, typically a filament, having a pointed tip, (b) a cone, and (c) a combination of a pedestal and an overlying cone whose base diameter is greater than the pedestal's diameter. Each electron-emissive element can be formed as a highly resistive portion and an overlying electron-emissive portion.
Abstract:
A gated electron-emitting device contains a multiplicity of electron-emissive elements, each formed with a pedestal (98) and an overlying cone (94.sub.1). In each electron-emissive element, the base diameter of the cone is greater than the element, the base diameter of the cone is greater than the diameter of the pedestal. With the pedestal being electrically conductive, the cone may be electrically resistive. Alternatively, each electron-emissive element can be an elongated element (30B) that reaches a maximum diameter at a point between, and spaced apart from, both ends of the element.
Abstract:
A flat-panel display is fabricated by a process in which a spacer (24) having a rough face (54 or 56) is positioned between a pair of plate structure (20 and 22). When electrons strike the spacer, the roughness in the spacer's face causes the number of secondary electrons that escape the spacer to be reduced, thereby alleviating positive charge buildup on the spacer. As a result, the image produced by the display is improved. The spacer facial roughness can be achieved in various ways such as providing suitable depressions (60, 62, 64, 66, 70, 74, or 80) or/and protuberances (82, 84, 88, and 92) along the spacer's face.
Abstract:
A cathode structure suitable for a flat panel display is provided with coated emitters. The emitters are formed with material, typically nickel, capable of growing to a high aspect ratio. These emitters are then coated with carbon containing material for improving the chemical robustness and reducing the work function. One coating process is a DC plasma deposition process in which acetylene is pumped through a DC plasma reactor to create a DC plasma for coating the cathode structure. An alternative coating process is to electrically deposit raw carbon-based material onto the surface of the emitters, and subsequently reduce the raw carbon-based material to the carbon containing material. Work function of coated emitters is typically reduced by about 0.8 to 1.0 eV.
Abstract:
A cathode structure suitable for a flat-panel display contains an emitter layer (213) divided into emitter lines, a plurality of electron emitters (229, 239, or 230) situated over the emitter lines, and a gate layer (215A) having an upper surface spaced largely above the electron emitters. The gate layer has a plurality of gate holes (215B) each corresponding to one of the electron emitters. The cathode structure further includes a carbon-containing layer (340, 240, or 241) coated over the electron emitters and directly on at least part of the upper surface of the gate layer such that at least part of the carbon-containing layer extending along and above the gate layer is exposed.
Abstract:
An electron-emitting device is fabricated by a process in which particles (46) are distributed over an initial structure. The particles are utilized in defining primary openings (52, 64, or 78) that extend through a primary layer (50A, 62A, or 72) provided over a gate layer (48A, 60A, or 60B) formed over an insulating layer (44) and in defining corresponding gate openings (54, 66, or 80) that extend through the gate layer. The insulating layer is etched through the primary and gate openings to form corresponding dielectric openings (56 or 68) through the insulating layer down to a lower non-insulating region (42). Electron-emissive elements (58A or 70A) are formed over the lower non-insulating region so that each electron-emissive element is at least partially situated in one dielectric opening. Formation of the electron-emissive elements, typically in the shape of cones, normally entails depositing emitter material over the primary layer, through the primary and gate openings, and into the dielectric openings and then removing the primary layer so as to remove any emitter material accumulated over the primary layer.
Abstract:
A gated electron-emitter having a lower non-insulating emitter region (42), an overlying insulating layer (44), and a gate layer (48A, 60A, 60B, 120A, or 180A/184) is fabricated by a process in which particles (46) are distributed over the insulating layer, the gate layer, a primary layer (50A, 62A, or 72) provided over the gate layer, a further layer (74) provided over the primary layer, or a pattern-transfer layer (182). The particles are utilized in defining gate openings (54, 66, 80, 122, or 186/188) through the gate layer. Spacer material is provided along the edges of the gate openings to form spacers (102A, 110A, 124A, 140, or 150B). Dielectric openings (80, 114, 128, 144, or 154) are formed through the insulating layer. The dielectric openings can be created before or after creating the spacers. In either case, emitter material in introduced into either the full dielectric openings, or into the portions of the dielectric openings not covered with spacer material, to form electron-emissive elements (106B, 116B, 130A, 146A, or 156B) typically filamentary in shape.