Abstract:
A HVAC controller located within a building zone includes a housing, a wireless radio, a controller monitor, a temperature sensor, and a temperature compensation module. The wireless radio is contained within the housing and is configured to transmit data via a wireless HVAC network. The controller monitor is configured to detect wireless activity of the wireless radio, the wireless activity generating heat inside the housing and causing a temperature inside the housing to exceed a temperature of the building zone outside the housing. The temperature sensor is configured to measure the temperature inside the housing. The temperature compensation module is configured to determine a wireless heat rise resulting from the wireless activity, to calculate a temperature offset based on the wireless heat rise, and to determine the temperature of the building zone outside the housing by subtracting the temperature offset from the temperature measured inside the housing.
Abstract:
A thermostat is disclosed. The thermostat can include one or more temperature sensors configured to measure one or more temperature values. The thermostat can include a processing circuit. The processing circuit can receive the one or more temperature values from the one or more temperature sensors. The processing circuit can receive one or more central processing unit (CPU) usage values, wherein the one or more CPU usage values indicate computing usage of the processing circuit. The processing circuit can determine, based on an empirical model comprising one or more gain values and one or more filters and based on one or more signals, a temperature of the building. The one or more signals comprise the one or more temperature values and the one or more CPU usage values. The empirical model accounts for dynamics of heat generated by the processing circuit and airflow acting on the thermostat.
Abstract:
A building system comprising one or more memory devices storing instructions that, are executed by one or more processors. The instructions include retrieving one or more instructions for installing a thermostat with heating, ventilation, and air conditioning (HVAC) equipment and causing a user interface to display the one or more instructions. The instructions further include receiving one or more confirmation indications of the one or more instructions being performed successfully by a user and causing the user interface to display an interface including one or more indication that the one or more instructions were performed successfully by the user.
Abstract:
A system for a plurality of thermostats each located in a different building in a neighborhood. Each thermostat includes a processing circuit configured to receive one or more assigned operating time slots from an analytics service and operate building equipment associated with the thermostat based on the one or more assigned operating time slots. The system further includes the analytics service. The analytics service includes a processing circuit configured to receive weather forecast data from a weather service and predict a period of time during which an energy usage peak will occur for the plurality of buildings based on the weather forecast data, determine the one or more operating time slots based on the period of time, assign the one or more operating time slots to each of the plurality of thermostats, and send the one or more assigned operating time slots to the plurality of thermostats.
Abstract:
A thermostat for a building space is disclosed. The thermostat can include a processing circuit. The processing circuit can cause building equipment to heat or cool the building space via one or more heating outputs or one or more cooling outputs. The processing circuit can record the length of time that the processing circuit causes the building equipment to heat or cool the building space. The processing circuit can simulate a thermal plant model to determine a simulated runtime, wherein the thermal plant model is a thermal plant model of the building space and the building equipment. The processing circuit can determine a number of hours saved based on the simulated runtime and the recorded length of time
Abstract:
A plant includes equipment that operate to affect a variable state or condition of the plant in response to a control signal. A feedback controller monitors a process variable received via a feedback signal from the plant and uses an error signal representing a setpoint error between the process variable and a setpoint to generate the control signal for the plant. An exponentially-weighted moving average (EWMA) calculator generates EWMA values based on the setpoint error. A normalized index generator uses the EWMA values to calculate a normalized performance index. A threshold generator generates a threshold based on a first alarm parameter κ representing a normalized magnitude of the setpoint error and a second alarm parameter η representing a normalized duration that the setpoint error has persisted. An alarm manager generates an alarm in response to the normalized performance index crossing the threshold.
Abstract:
An HVAC system within a building including a ventilator, a number of sensors, and a control device. The control device has a processor that is configured to receive a request to operate the ventilator. The control device is further configured to determine a status of a minimum runtime mode of the ventilator. The minimum runtime mode operates the ventilator for a minimum amount of each time in a predefined time period. The control device is further configured to determine an air quality value. The air quality value is based on one or more measurements provided to the control device by the plurality of sensors. The control device is further configured to operate the ventilator based on the air quality value being determined to be below an acceptable value.
Abstract:
A thermostat includes a housing with an interior volume, a display attached to the housing, a first circuit board positioned within the interior volume, a second circuit board positioned within the interior volume, wherein the first circuit board is positioned perpendicular to the second circuit board, processing electronics mounted to at least one of the first circuit board and the second circuit board, the processing electronics configured to operate the display, and a battery positioned within the interior volume and configured to provide power to the display and the processing electronics.
Abstract:
A HVAC controller includes a housing and one or more heat-generating components contained within the housing. The heat-generating components cause a temperature inside the housing to exceed a temperature outside the housing. The controller includes a temperature sensor configured to measure the temperature inside the housing and a controller event detector configured to detect, for each of the heat-generating components, a controller event that generates heat inside the housing. The controller further includes a temperature compensation module configured to identify a steady-state temperature gain associated with each of the detected controller events, to calculate a temperature offset using a summation of the steady-state temperature gains, and to determine the temperature of the building zone outside the housing by subtracting the temperature offset from the temperature measured inside the housing.
Abstract:
A setpoint alarming system includes a feedback controller that monitors a process variable provided as a feedback signal from a plant and uses an error signal representing a difference between the process variable and a setpoint to generate a control signal for the plant. The plant uses the control signal to affect the process variable. The system includes a normalized index generator that uses the error signal to generate a normalized performance index for the plant. The system includes an expected value estimator that estimates a value of the normalized performance index expected to occur when a setpoint error of a predetermined magnitude has persisted for a predetermined duration. The system includes an alarm manager that compares the normalized performance index to the expected value and generates an alarm in response to the normalized performance index dropping below the expected value.