摘要:
A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 μm and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
摘要:
The invention provides an Fe—Ni—Mo soft magnetic flaky powder having a component composition of, in percent by mass, Ni: 60 to 90%, Mo: 0.05 to 1.95%, and the balance of Fe and unavoidable impurities, and a flat surface of an average particle size of 30 to 150 μm, and an aspect ratio (average particle size /average thickness) of 5 to 500; and having a peak intensity ratio I200/I111 within a range between 0.43 and 10, where I200 is the peak height of the face index (200) and I111 is the peak height of the face index (111), in an X-ray diffraction pattern measured in such a manner that the plane including the X-ray incident direction and the diffraction direction is perpendicular to the flat surface of the soft magnetic flaky powder, and the angle between the incident direction and the flat surface is equal to the angle between the diffraction direction and the flat surface. Furthermore, the invention provides a soft magnetic flaky powder with oxide layer wherein an oxide layer of a thickness of 50 to 1000 Å is formed on the surface of this soft magnetic flaky powder.
摘要:
A polypropylene-based resin composition for injection foam molding, containing (A) 50 to 95 parts by weight of a linear polypropylene-based resin having a melt flow rate of from 10 g/10 min. to 100 g/10 min. and a melt tension of 2 cN or less and (B) 5 to 50 parts by weight of a modified polypropylene having a melt flow rate of from 0.1 g/10 min. to less than 10 g/10 min. and a melt tension of 5 cN or more and exhibiting a strain hardening property (provided that a total of the resin (A) and the resin (B) is 100 parts by weight) and a foaming agent are supplied to an injection molding machine to be injected into a die, thereby achieving a foam molding. It is thus possible to obtain a injection foamed molded article which has a satisfactory injection foam moldability, a skin layer having little silver streaks or the like on its surface, and an internal core layer having a foam of high expansion ratio and uniformly fine and a excellent appearance glossiness, lightweightness, and rigidity at a low cost.
摘要:
The present invention provides a method for producing a rare earth alloy magnet powder exhibiting stable and superior magnetic properties using hydrogenation followed by dehydrogenation. In a method for producing a rare earth alloy magnet powder wherein a homogenized rare earth alloy magnet alloy material is subjected to hydrogenation at a temperature in a range between 750.degree. C. and 950.degree. C., followed by dehydrogenation at a temperature in a range between 750.degree. C. and 950.degree. C.; cooled; and crushed, both the hydrogenation and the dehydrogenation are carried out in a vacuum tube furnace; and the alloy material in the dehydrogenation step maintains a temperature drop of at most 50.degree. C. due to an endothermic reaction which occurs during the dehydrogenation step.
摘要:
A R-Fe-B or R-Fe-Co-B permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity, having powder particles. The powder particles each consist essentially of, in atomic percentage:R: 10-20%B: 3-20%;at least one element selected from the group consisting of Ti, V, Nb, Ta, Al, and Si: 0.001-5.0%; andFe and inevitable impurities: the balance,The R-Fe-Co-B magnet powder further contains 0.1-50% Co.The powder particles each have an aggregated recrystallized structure having a main phase thereof formed by a R.sub.2 Fe.sub.14 B or R.sub.2 (Co,Fe).sub.14 B type intermetallic compound phase having a tetragonal structure. The intermetallic compound phase is formed of recrystallized grains aggregated therein and includes at least 50 volumetric % of recrystallized grains having a ratio b/a smaller than 2 provided that a is designated by the smallest diameter of each of the recrystallized grains, and b is by the largest diameter thereof. The recrystallized grains form the aggregated recrystallized structure having an average grain size within a range of 0.05-20 .mu.m.
摘要:
There is disclosed a R-Fe-B or R-Fe-Co-B alloy permanent magnet powder which may contain Ga, Zr or Hf, or may further contain Al, Si or V. Each individual particle of the powder includes a structure of recrystallized grains containing a R.sub.2 Fe.sub.14 B or R.sub.2 (Fe,Co).sub.14 B intermetallic compound phase. The intermetallic compound phase has recrystallized grains of a tetragonal crystal structure having an average crystal grain size of 0.05 to 20 .mu.m. At least 50% by volume of the recrystallized grains of the aggregated structure are formed so that a ratio of the greatest dimension to the smallest dimension is less than 2 for each recrystallized grain. In order to manufacture the magnet powder, regenerative material and alloy material are prepared and their temperature is elevated in a hydrogen atmosphere. Then, the alloy material and the regenerative material are held in the same atmosphere at a temperature of 750.degree. C. to 950.degree. C., and then held in a vacuum at 750.degree. C. to 950.degree. C., and cooled and crushed. A bonded magnet produced using the above magnet powder is also disclosed.
摘要:
A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10−12 to 1×10−1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.
摘要:
Oxide-coated Fe powder for producing various electromagnetic circuit components requiring high resistivity is provided. The oxide-coated Fe powder is a Mg-containing oxide film-coated iron powder coated with an Mg—Fe—O ternary-based deposition film at least containing (Mg, Fe)O. The (Mg,Fe)O is a crystalline MgO-dissolving wustite. The Mg—Fe—O ternary-based oxide deposition film has a sulfur-enriched layer containing a higher concentration of sulfur than that of central portion of the iron powder, fine crystalline texture having a grain size of 200 nm or less, and the outermost surface is substantially composed of MgO. A composite soft magnetic material using the Mg-containing oxide film-coated iron powder is also provided.
摘要:
A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 μm and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
摘要:
An object of the present invention is to provide a composite soft magnetic sintered material that has high density, high mechanical strength and high relative magnetic permeability at high frequencies and, in order to achieve this object, the present invention provides a method of producing the composite soft magnetic sintered material, which comprises mixing a composite soft magnetic powder, that consists of iron powder, Fe—Si based soft magnetic iron alloy powder, Fe—Al based soft magnetic iron alloy powder, Fe—Si—Al based soft magnetic iron alloy powder, Fe—Cr based soft magnetic iron alloy powder or nickel-based soft magnetic alloy powder (hereinafter these powders are referred to as soft magnetic metal powder) of which particles arc coated with a ferrite layer which has a spinel structure, with 0.05 to 1.0% by weight of silicon dioxide powder having a mean powder particle size of 100 nm or less and sintering the mixed powder after compression molding, or processing two or more kinds of the composite soft magnetic powders, of which particles are coated with ferrite layer having a spinel structure of a different compositions, by compression molding and sintering.