摘要:
The present invention provides a displacement measurement method, an apparatus thereof, a probe microscope. which make it possible to stably measure an amount of displacement and a moving distance of an object under measurement with an accuracy of the sub-nanometer order or below without being affected by disturbances such as fluctuations of air, mechanical vibration.Specifically, with the present invention, a pulsed beam is split into two; one beam is reflected by an object under measurement and then inputted to a delay optical path equivalent to one pulse period; and the other beam is sent through the same delay optical path in the opposite direction up to the object under measurement with a delay of one pulse period, and then reflected by the object under measurement. Then, an optical phase variation caused by the movement of the object under measurement is obtained by subjecting the two pulsed beams to interference.
摘要:
A scanning probe microscope for measuring a surface profile of a sample by bringing a probe into close proximity to or contact with the surface of the sample and scanning the sample surface includes: a sample stage movable in at least one axis direction; the probe which is brought into close proximity to or contact with the surface of the sample mounted on the sample stage and scans the sample surface; a probe-driving unit for moving the probe three-dimensionally; a probe deflection detector for detecting a deflection of the probe; and an observation optical system which has an objective lens and observes the probe disposed on substantially the optical axis of the objective lens, and the sample. The probe-driving unit is disposed with three sets of paired drive sources arranged essentially with symmetry with respect to the optical axis of the objective lens.
摘要:
The present invention relates to a method for inspecting a crack in a metal surface or the like, and, particularly, to an inspection method and apparatus for nondestructive inspection such as liquid penetrant inspection and magnetic particle testing. The present invention provides a flaw inspection method that essentially comprises the steps of illuminating a surface of a sample to be inspected, obtaining an image of the surface, characterizing a potential flaw on the inspected surface by processing the obtained image, displaying an image of the potential flaw, verifying that the potential flaw is a true flaw, and storing an image of the verified flaw in memory.
摘要:
A method for high-precision measurement of film thickness and the distribution of film thickness of a transparent film is disclosed. The method is performed during a CMP process, without being affected by the film thickness distribution among the LSI regions or on the semiconductor wafer surface. The film thickness is measured by specifying relatively level measurement regions, according to a characteristic quantity of the spectral waveform of the reflected light from the transparent film, such as the reflection intensity, frequency spectrum intensity. This permits highly accurate control of film thickness. The leveling process in CMP processing can be optimized on the basis of the film thickness distribution.
摘要:
The laser beam machine of the present invention includes: an XY stage on which to rest a workpiece with multiple machining objects arrayed on it, and which moves the workpiece in an XY direction on the basis of NC data; an image acquisition head which is provided in an image acquisition station and has oblique illumination optical system and detection optical system; and a laser machining head which is provided in a laser machining station and has a laser light source, an XY optical beam deflector for deflecting a laser beam in the XY direction on the basis of the deflection control data obtained in accordance with the image signals from each machining object that have been acquired by the image acquisition head, and an irradiation lens for admitting the above-deflected laser beam into each machining object from a substantially perpendicular direction.
摘要:
Arrangements (e.g., methods) for manufacturing a display device, including irradiating an amorphous semiconductor film formed on a substrate with an excimer laser beam to convert the amorphous semiconductor film into a polycrystalline semiconductor film; and irradiating predetermined areas of the polycrystalline semiconductor film intermittently with a continuous wave laser beam while a position of the substrate with respect to the continuous wave laser beam is scanned, crystal grains larger than those of the polycrystalline semiconductor film other than the predetermined areas are formed in each of the predetermined areas locally in the polycrystalline semiconductor film, wherein first thin film transistors are formed in the predetermined areas while second thin film transistors are formed in the polycrystalline semiconductor film other than the predetermined areas thereof.
摘要:
The present invention relates to a method for inspecting a crack in a metal surface or the like, and, particularly, to an inspection method and apparatus for nondestructive inspection such as liquid penetrant inspection and magnetic particle testing. The present invention provides a flaw inspection method that essentially comprises the steps of illuminating a surface of a sample to be inspected, obtaining an image of the surface, characterizing a potential flaw on the inspected surface by processing the obtained image, displaying an image of the potential flaw, verifying that the potential flaw is a true flaw, and storing an image of the verified flaw in memory.
摘要:
In a displacement measurement apparatus using light interference, a probe light path is spatially separated from a reference light path. Therefore, when a temperature or refractive index distribution by a fluctuation of air or the like, or a mechanical vibration is generated, an optical path difference fluctuates between both of the optical paths, and a measurement error is generated. In the solution, an optical axis of probe light is brought close to that of reference light by a distance which is not influenced by any disturbance, a sample is irradiated with the probe light, a reference surface is irradiated with the reference light, reflected light beams are allowed to interfere with each other, and a displacement of the sample is obtained from the resultant interference light to thereby prevent the measurement error from being generated by the fluctuation of the optical path difference.
摘要:
A displacement measurement method, an apparatus thereof, and a probe microscope. which enable stable measure an amount of displacement and a moving distance of an object under measurement with an accuracy of the sub-nanometer order or below without being affected by disturbances such as fluctuations of air and mechanical vibration. A pulsed beam is split into two; one beam is reflected by an object under measurement and then inputted to a delay optical path equivalent to one pulse period; and the other beam is sent through the same delay optical path in the opposite direction up to the object under measurement with a delay of one pulse period, and then reflected by the object under measurement. An optical phase variation caused by the movement of the object under measurement is obtained by subjecting the two pulsed beams to interference.
摘要:
In a displacement measurement apparatus using light interference, a probe light path is spatially separated from a reference light path. Therefore, when a temperature or refractive index distribution by a fluctuation of air or the like, or a mechanical vibration is generated, an optical path difference fluctuates between both of the optical paths, and a measurement error is generated. In the solution, an optical axis of probe light is brought close to that of reference light by a distance which is not influenced by any disturbance, a sample is irradiated with the probe light, a reference surface is irradiated with the reference light, reflected light beams are allowed to interfere with each other, and a displacement of the sample is obtained from the resultant interference light to thereby prevent the measurement error from being generated by the fluctuation of the optical path difference.