摘要:
A scanning probe microscope for measuring a surface profile of a sample by bringing a probe into close proximity to or contact with the surface of the sample and scanning the sample surface includes: a sample stage movable in at least one axis direction; the probe which is brought into close proximity to or contact with the surface of the sample mounted on the sample stage and scans the sample surface; a probe-driving unit for moving the probe three-dimensionally; a probe deflection detector for detecting a deflection of the probe; and an observation optical system which has an objective lens and observes the probe disposed on substantially the optical axis of the objective lens, and the sample. The probe-driving unit is disposed with three sets of paired drive sources arranged essentially with symmetry with respect to the optical axis of the objective lens.
摘要:
A scanning probe microscope for measuring a surface profile of a sample by bringing a probe into close proximity to or contact with the surface of the sample and scanning the sample surface includes: a sample stage movable in at least one axis direction; the probe which is brought into close proximity to or contact with the surface of the sample mounted on the sample stage and scans the sample surface; a probe-driving unit for moving the probe three-dimensionally; a probe deflection detector for detecting a deflection of the probe; and an observation optical system which has an objective lens and observes the probe disposed on substantially the optical axis of the objective lens, and the sample. The probe-driving unit is disposed with three sets of paired drive sources arranged essentially with symmetry with respect to the optical axis of the objective lens.
摘要:
This probe control method is applied to the scanning probe microscope having a probe section with a probe pointed at a sample, a detection section for detecting physical quantity between the sample and the probe, a measurement section for measuring the surface of the sample to obtain the surface information on the basis of the physical quantity when scanning the sample surface by the probe, and a movement mechanism with at least two degree of freedom. The probe control method has steps of moving the probe in a scanning direction different from the contact direction while making the probe come into contact with the sample surface, detecting the torsional state of the probe during the movement of the probe, and adjusting either or both of the rate in the scanning direction and the force in the contact direction on the basis of the detected value obtained by the detection step.
摘要:
With a scanning probe microscope, if a plurality of sample properties are measured using a scanning scheme of allowing a probe to approach and withdraw from a sample, the sample properties need to be accurately and reliably detected in the minimum required measurement time. Further, the acting force between the probe and the sample varies depending on the type of the probe and the wear condition of a probe tip. Thus, disadvantageously, property values acquired using different probes cannot be compared with one another unless the artifactual effect of the measuring probes are eliminated. In accordance with the present invention, with a scanning probe microscope, the probe is brought into intermittent contact with the sample, while driving means repeatedly allows the probe to approach and withdraw from the sample with a variable amplitude. The sample property is thus acquired at a high speed. Further, a calibration sample is used in a given environment (given temperature and humidity) to acquire a force curve for at least one point. Information obtained from the force curve is used to correct measurements to display the distribution of the sample property.
摘要:
With a scanning probe microscope, if a plurality of sample properties are measured using a scanning scheme of allowing a probe to approach and withdraw from a sample, the sample properties need to be accurately and reliably detected in the minimum required measurement time. Further, the acting force between the probe and the sample varies depending on the type of the probe and the wear condition of a probe tip. Thus, disadvantageously, property values acquired using different probes cannot be compared with one another unless the artifactual effect of the measuring probes are eliminated. In accordance with the present invention, with a scanning probe microscope, the probe is brought into intermittent contact with the sample, while driving means repeatedly allows the probe to approach and withdraw from the sample with a variable amplitude. The sample property is thus acquired at a high speed. Further, a calibration sample is used in a given environment (given temperature and humidity) to acquire a force curve for at least one point. Information obtained from the force curve is used to correct measurements to display the distribution of the sample property.
摘要:
A light exposure device and method for exposing and printing a predetermined pattern on an exposure surface of a substrate comprises measuring means for measuring curvature of the exposure surface of the substrate, a chuck including suck and hold means for sucking and holding a back surface of the substrate opposite to the exposure surface and deforming means for imparting a force to the back surface of the substrate to deform the substrate, and control means for controlling the deforming means of the chuck in accordance with the curvature of the exposure surface of the substrate measured by the measuring means such that the exposure surface of the substrate conforms to an image surface of the pattern over an entire exposure area within a predetermined allowable error.
摘要:
A scanning probe microscope, capable of performing shape measurement not affected by electrostatic charge distribution of a sample, which: monitors an electrostatic charge state by detecting a change in a flexure or vibrating state of a cantilever due to electrostatic charges in synchronization with scanning during measurement with relative scanning between the probe and the sample, and makes potential adjustment so as to cancel an influence of electrostatic charge distribution, thus preventing damage of the probe or the sample due to discharge and achieving reduction in measurement errors due to electrostatic charge distribution.
摘要:
A measurement method of a scanning probe microscope including a first approach operation adjusting an operation position of a fine positioning unit to near a maximum extension amount and ending the approach by coarse positioning, a first measurement operation making the probe scan the surface for measurement in a close probe state based on the first approach operation to obtain relief information of the sample surface, a positioning operation positioning the probe at a recessed part based on the relief information obtained by the first measurement operation, a second approach operation making the probe again approach the surface at a position determined by the positioning operation, adjusting an operation position of the Z-axis fine positioning device to close to a maximum extension amount, and ending the repeated approach, and a second measurement operation making the probe scan the surface for measurement in a close probe state based on the second approach operation to obtain relief information of the sample surface.
摘要:
A scanning probe microscope, capable of performing shape measurement not affected by electrostatic charge distribution of a sample, which: monitors an electrostatic charge state by detecting a change in a flexure or vibrating state of a cantilever due to electrostatic charges in synchronization with scanning during measurement with relative scanning between the probe and the sample, and makes potential adjustment so as to cancel an influence of electrostatic charge distribution, thus preventing damage of the probe or the sample due to discharge and achieving reduction in measurement errors due to electrostatic charge distribution.
摘要:
In the case of measuring a pattern having a steep side wall, a probe adheres to the side wall by the van der Waals forces acting between the probe and the side wall when approaching the pattern side wall, and an error occurs in a measured profile of the side wall portion. When a pattern having a groove width almost equal to a probe diameter is measured, the probe adheres to both side walls, the probe cannot reach the groove bottom, and the groove depth cannot be measured. When the probe adheres to a pattern side wall in measurements of a microscopic high-aspect ratio pattern using an elongated probe, the probe is caused to reach the side wall bottom by detecting the adhesion of the probe to the pattern side wall, and temporarily increasing a contact force between the probe and the sample. Also, by obtaining the data of the amount of torsion of a cantilever with the shape data of the pattern, a profile error of the side wall portion by the adhesion is corrected by the obtained data of the amount of torsion.