摘要:
In a heat exchanging apparatus for a vapor compression refrigerant cycle, an internal heat exchanger is attached to an end of a radiator. The internal heat exchanger is arranged such that high-pressure refrigerant passages are closer to the radiator than low-pressure refrigerant passages. The heat exchanging apparatus can be mounted on a vehicle such that the radiator receives cooling air more than the internal heat exchanger. Because the internal heat exchanger performs heat exchange between high-pressure refrigerant and low-pressure refrigerant, performance of the internal heat exchanger is not degraded even if it is located at a part receiving less cooling air. Thus, the heat exchanging apparatus is easily mounted on a vehicle by integrating the internal heat exchanger with the radiator, without reducing a cooling capacity of the radiator.
摘要:
The front end portion of a fitting projection from the portion on which a backup ring is mounted to the front end, has a diameter smaller than the inner diameter of the backup ring. The backup ring is endless in the circumferential direction thereof. The backup ring functions as a sealing member.
摘要:
By the use of the suction pressure of a compressor, the pressure in back pressure chambers 71g and 71h are reduced to open a refrigerant inlet side and a refrigerant outlet side of an evaporator, and when the compressor is at rest, by the use of a first coil spring 76 and a second coil spring 77, the refrigerant inlet side and the refrigerant outlet side of the evaporator 40 are closed mechanically. Due to this, it is possible to minimize a refrigerant leak by the use of an inexpensive means.
摘要:
In a vehicle air conditioner having a refrigerant cycle using carbon dioxide as refrigerant, a displacement of a compressor is changed and controlled, so that an air temperature immediately after passing through an evaporator becomes approximately 0° C., and it can prevent a refrigerant amount discharged from the compressor from being larger than a predetermined flow amount. Because the refrigerant amount discharged from the compressor is controlled to be not larger than the predetermined flow amount, it can prevent a high-pressure side refrigerant pressure and a high-pressure side refrigerant temperature from being excessively increased in the refrigerant cycle.
摘要:
A thermal expansion valve for automotive coolant systems which is significantly more compact than previously developed expansion values. The housing of the expansion valve is divided into a first housing formed in a cylindrical shape with a bottom and a second housing formed in a columnar shape. The first housing is fit into the second housing, and both are integrally connected to each other. A temperature sensing mechanism having a temperature sensing chamber and an expansion mechanism for adjusting an opening degree of a throttle passage in accordance with an evaporator outlet temperature sensed by the temperature sensing means are disposed in the second housing. First and fourth joint portions connected to inlet and outlet refrigerant pipes of the evaporator, respectively, are at the bottom of the first housing. On the other hand, second and third joint portions connected to a compressor suction side refrigerant pipe and a high-pressure side refrigerant pipe from a receiver, respectively, are at an outer surface of the second housing. In this manner the overall size of the expansion valve is reduced considerably, thus saving valuable space in an engine compartment of a vehicle.
摘要:
A nozzle cap is disclosed which is threadedly engaged with a distal end of a nozzle through which a compressed fluid is passed. The nozzle cap includes a terminal wall opposed to a distal end face of the nozzle axially with respect to the nozzle, a sealing member placed on the terminal wall so as to adhere closely to the distal end of the nozzle thereby to seal an opening of the nozzle, and a holding wall pressing and holding an edge of the sealing member in co-operation with the terminal wall between the walls.
摘要:
A refrigeration cycle not generating unpleasant noise when starting or stopping a second evaporator while a first evaporator is operating is provided. The refrigeration cycle of the present invention is characterized by making a differential pressure between an inlet refrigerant pressure and outlet refrigerant pressure of a second evaporator solenoid valve when starting or stopping the second evaporator during operation of the first evaporator smaller than the differential pressure when operating only the first evaporator, then opening or closing the second evaporator solenoid valve.
摘要:
A nozzle (41) is made of a sintered metal, and a pressure increasing portion (a mixing portion (42) and a diffuser (43)) is manufactured by plastic-forming a metal pipe. Accordingly, the nozzle (41) can be manufactured in a short time while high accuracy in machining is maintained. Thus, the cost of manufacturing an ejector (40) can be reduced.
摘要:
By the use of the suction pressure of a compressor, the pressure in back pressure chambers 71g and 71h are reduced to open a refrigerant inlet side and a refrigerant outlet side of an evaporator, and when the compressor is at rest, by the use of a first coil spring 76 and a second coil spring 77, the refrigerant inlet side and the refrigerant outlet side of the evaporator 40 are closed mechanically. Due to this, it is possible to minimize a refrigerant leak by the use of an inexpensive means.
摘要:
A refrigerant cycle includes an ejector having a throttle changeable nozzle. In the refrigerant cycle, a control valve having a needle valve controls a pressure of a middle-pressure refrigerant in a bypass passage, and a pilot valve controls a throttle opening degree of the nozzle in accordance with a pressure difference between the pressure of the middle-pressure refrigerant in the bypass passage and the refrigerant pressure in a high-pressure refrigerant inlet port of the ejector. When an opening degree of the needle valve is changed in accordance with a load variation or a load state, the pressure of the middle-pressure refrigerant in the bypass passage is changed. Accordingly, the moving position of the pilot valve is controlled, and the throttle opening degree of the nozzle is controlled.