Abstract:
A pool maintenance system for maintaining desired characteristics of a body of water in fluid communication therewith, includes a chlorine generator having an integral power supply input, a water circulation pump in fluid communication with the body of water and with the chlorine generator via a series of water conduits, and a heat pump in fluid communication the water circulation pump. The water circulation pump and/or the heat pump incorporate an integral power supply/transformer functioning as a single shared power source communicatively integrating the chlorine generator with the respective water circulation pump and/or heat pump. A wired and/or wireless interface is provided electrically connected to the power supply and transformer integrated with the respective water circulation pump and or heat pump. The interface may be configured for communication with an internet-connected user-accessible device and/or a user portable smart device to enable the user to monitor and control at least the operation of the pumps and the chlorinator.
Abstract:
An improved controller used in connection with pool area and surrounding landscaping low voltage lighting and related low voltage subcomponents, such as lighting, fountains, waterfalls, deck jets, and music or related entertainment devices, incorporates an independently-addressable light control relay, or analogous electronic component, and is implementable as a retrofit replacement for existing controller systems or, alternatively, as a complete new unit for controlling low voltage subcomponents.
Abstract:
An underwater pendant or accent light in contact with a body of water is provided. The underwater pendant or accent light has a housing. The housing has an at least one water tight end fitting at a first end of the housing and an at least one lens at a second end of the housing. An electronics section is further provided. The electronics section including an at least one controller contained within the housing and coupled to a power source. An at least one LED is coupled to the electronics section. An at least one heat sink is coupled to the at least one LED and the electronics section, the heat sink thermally coupled to and mounting the at least one LED and thermally coupled to the electronics section such that heat is communicated through the at least one heat sink. The heat sink has an at least one thermal expansion slot to accommodate thermal expansion of the heat sink as it absorbs heat, wherein the heat sink is in thermal communication through a thermal path with the housing and transmits the absorbed heat through the housing and lens to the body of water. A method of using same is also provided.
Abstract:
A water level detection system in a pool, spa, fountain or water feature, the water level detection system being provided with a tap line coupled to a plumbing line on a suction or supply side of a filtration system and admitting water from the pool, spa, fountain or water feature such that the change in level of the water in the tap line corresponds to a change in level of the water in the pool, spa, fountain or water feature. A sensing module has at least one sensor for detecting the height of a column of water or the pressure of a column of air in the water tap line. A controller is coupled to the sensing module and adapted to collect the data from the sensors that detect changes in the level of the water level of the pool, spa, fountain or water feature, communicate the detection of such a change, and report such a change to initiate addition or removal of water from the pool, spa, fountain or water feature body of water to adjust the water level in the body of water to a set point.
Abstract:
An underwater projection system, a controller and method of controlling are herein described. The controller providing, at least in part, a boundary setting module or methodology and/or an image correction module or methodology through a user interface for the underwater projection system. A user interface is provided to enable user control and input and adjustment of the image controller from an observation point outside of the media of the underwater projection system, while the adjustments are made in-situ. An optional automated edge or edge and surface detection system is also contemplated to assist in boundary detection within the water feature for the underwater image projection system.
Abstract:
An underwater image projection system submerged in a body of water and projecting an image within said body of water is provided having an enclosure with a lens assembly. A projection element has a light source projecting an image within the body of water from the projection element with an at least one light source steering the image. A system controller is coupled to and controls the projected light source, the projected light source steering device and the further image steering device. A user inputs image data to the controller through the user input device and the controller interprets the image data into a set of image control variables and executes control of the projected light source and image source and further image steering device in coordination and projects the image through the projection element to project from underwater a static or animated image on an underwater surface of the body of water.
Abstract:
An underwater pendant light installation within a wall of a water feature has an installation tube in a niche tube having a facia section at the terminus of the niche tube. One terminus of the niche tube in communication with the water feature and having a water inlet coupled to a water gap section. An at least one underwater pendant or accent light having a housing, a lens body, an electronics section, an at least one heat sink, and one or more LEDs is mounted within the niche tube. The underwater pendant or accent light being coupled in a watertight fashion to a power source through the watertight coupling and being contained within the niche tube such that the water gap section surrounds at least in part the housing and permits water from the water feature to circulate in contact the housing but not penetrate into the watertight electrical connection.
Abstract:
An inline chlorinator with a housing having an inlet end and an outlet end in communication with the swimming pool bringing water from the pool through the inlet end and back to the pool from the outlet end and an upper compartment having an electronics section is provided. It includes a power source coupling and an at least one sensor sensing changes in the power source coupling. A controller unit contained within the electronics section, the controller unit being electrically coupled to a power source and an at least one electrolytic plate. An at least one hours of operation counter is provided. A heat sink member is also provided and is in thermal communication with the controller, where the flow of the water in the swimming pool water purification system cools the heat sink member, controller unit, and the electronics in the electronics section. Where the heat sink is separated from the water coming in the inlet end by a separation section, the separation section being a concurrent wall of the electronics compartment and the separation section in direct contact with the water coming from the pool at the inlet end, the separation section being in direct contact with the heat sink and both the heat sink and the separation section being continually cooled by the water flowing in through the inlet end of the housing.
Abstract:
A method and apparatus are provided to quantify psychological and physiological components to measure acute stress in humans, in which a stimulus can be applied to the test subject's environment during the test. The method involves multiple stress/relaxation intervals while physiological measurements are taken and “measured,” and involves questionnaires that are answered after each of the intervals to “measure” the test subject's psychological state. A computerized testing apparatus acquires the physiological measurements, and also is used by the test subject in answering the questionnaires. The “stimulus” can be a fragrance, flavor, product, or task, and a “blank stimulus” is normally used during one of the stress intervals.