Abstract:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
Abstract:
Apparatus and method for generating a variable-frequency clock is disclosed. A control state machine defines various commands and generates corresponding control signals. A variable-frequency clock generator then outputs the variable-frequency clock that has a specific pattern corresponding with the respective command, where the variable-frequency clock is constructed with a first clock and a second clock having a frequency different from the first clock. A control signals generator accordingly outputs the control signals that are also constructed with the first clock and the second clock.
Abstract:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
Abstract:
This invention provides a method for accessing memory. The method includes, generating a block index for a block of data, mapping the block index to a physical address of a memory based on the block index and a number N, wherein N is bank number of the memory, storing the block of data into the memory at the physical address, and repeating from the generating step, wherein the mapping step makes each one of the block indexes map in turns to one physical address located at different banks, and result in any logical adjacent block of data be stored physically at different banks of the memory.
Abstract:
A two-way display infrared thermometer comprises a main body. An infrared wave-collecting device is disposed at the front end in the main body. A sensor is disposed at the bottom of the infrared wave-collecting device. A liquid crystal display is disposed on the surface of the main body to display the temperature. A direction detection device is disposed in the main body to detect the horizontal state of the main body so as to control the display direction of the liquid crystal display. A mount is disposed on the main body so that the main body can be supported and adjust the angle of measurement. A direction-switching device is disposed on the main body for manually switching the display direction of the liquid crystal display. Thereby, the infrared thermometer can straightly display the measured temperature for quick reading of the temperature value regardless of standing upright or upside down.
Abstract:
A method for forming a semiconductor dielectric layer comprising the steps of providing a substrate having a plurality of semiconductor devices already formed thereon, and then forming a first dielectric layer over the substrate. Next, a silicon oxy-nitride layer is formed over the first dielectric layer, and finally a second dielectric layer is formed over the silicon oxy-nitride layer.
Abstract:
A method for fabricating a type of bit line is able to form a small-sized bit line. In this method a first dielectric layer, a first conductive layer, and a second conductive layer are formed on a substrate in sequence. The first dielectric layer is exposed, then a second conducting wire and a first conducting wire are formed, respectively. A portion of the second conducting wire is removed by a cleaning liquid, so that the feature size of the second conducting wire is less than the feature size of the first conducting wire. An oxide layer is formed on the second conducting wire and the first conducting wire by performing a thermal treatment. The feature size of the second conducting wire is approximately equal to the feature size of the first conducting wire.
Abstract:
Nanowire-based mechanical switching devices are described. For example, a nanowire relay includes a nanowire disposed in a void disposed above a substrate. The nanowire has an anchored portion and a suspended portion. A first gate electrode is disposed adjacent the void, and is spaced apart from the nanowire. A first conductive region is disposed adjacent the first gate electrode and adjacent the void, and is spaced apart from the nanowire.