Abstract:
A method for forming a semiconductor device with avoiding chemical mechanical polishing caused residue on uncompleted fields of wafer edge is disclosed. The method comprising removing all conductive layers and silicon nitride layers on the uncompleted fields, thereby the height of the uncompleted fields will not higher than the height of the semiconductor device.
Abstract:
A fabricating method and a structure of a stacked-type capacitor is provided comprising forming a first dielectric layer having a first via on a semiconductor substrate. A first conductive layer is filled into the first via. Then, insulating layers and dielectric layers are formed. A photolithography step is used to form a second dendriform via in the insulating layers and the dielectric layers. A second conductive layer is filled in the second dendriform via. The insulating layers and conductive layers are removed to form a dendriform lower electrode. The dendriform electrode provides a larger surface area to increase capacitance. Further, a polysilicon layer of hemispherical grains is formed to increase the surface area of the lower electrode.
Abstract:
The semiconductor wafer includes a substrate, a gate positioned on the substrate, a cap layer positioned on top of the gate, and a silicon oxide spacer positioned around both the gate and the cap layer. Firstly, a dielectric layer is formed on the semiconductor wafer to cover the gate. An etching back process is then performed to remove portions of both the dielectric layer and the silicon oxide spacer. Finally, a silicon nitride spacer is formed on the dielectric layer around the cap layer. The silicon nitride spacer is positioned on the surface of the dielectric layer and functions in reducing stress between the silicon nitride spacer and the substrate.
Abstract:
A method for forming a semiconductor dielectric layer comprising the steps of providing a substrate having a plurality of semiconductor devices already formed thereon, and then forming a first dielectric layer over the substrate. Next, a silicon oxy-nitride layer is formed over the first dielectric layer, and finally a second dielectric layer is formed over the silicon oxy-nitride layer.
Abstract:
A method for fabricating a double-cylinder capacitor is provided. The double-cylinder capacitor has a storage electrode having dual, concentric cylinder structures. The dielectric layer and the top electrode are formed in sequence over the bottom electrode. The storage area is thus enlarged by the double-cylinder capacitor of the invention. Thus, the capacitance of the capacitor can be effectively increased.
Abstract:
A method of fabricating a MOS device with a localized punchthrough stopper. In the process, a dummy layer is employed to define a well for implanting the localized punchthrough stopper. The dummy layer is preferably made of silicon nitride, which has a high etching selectivity with respect to the oxide material forming sidewall spacers of MOS devices. The localized punchthrough stopper is formed at the boundary of the lightly-doped regions and the channel by implanting impurities through the well resulting from the removal of a portion of the dummy layer adjacent to the gate structure.
Abstract:
A method for depositing an oxide layer after spacer formation is disclosed. Owing to an oxide layer after spacer formation, therefore substantially increasing the effective thickness of spacer of the peripheral circuit. The method includes which includes a substrate on which an interior and a peripheral circuit are defined, wherein there is a gate oxide layer formed on the substrate. Sequentially an interior gate and a peripheral gate are formed. Then, N-type ions are implanted into the substrate of the interior and peripheral circuit. Consequently, conformal a second dielectric layer and a third dielectric layer are deposited above the substrate, interior gate, and peripheral gate, wherein second dielectric layer is etched to form a spacer of the interior gate and the peripheral gate. And then N.sup.+ -type ions are implanted into the substrate to form source/drain by using the peripheral gate, the spacer and a portion of the third dielectric layer that runs along the spacer as a mask. Subsequently, a blanket inter-plasma dielectric is deposited above the substrate. Finally, inter-polysilicon dielectric of the interior and peripheral circuit is etched anisotropically to form a plurality of contacts.
Abstract:
A method of manufacturing an alignment mark. A substrate having a device region and an alignment mark region is provided. The device region is higher than the alignment mark region. The device region comprises an active region. An isolation structure is formed in the substrate at the edge of the alignment mark region and a first dielectric layer is formed over a portion of the substrate at the alignment mark region, simultaneously. A conductive layer is formed over the substrate. A portion of the conductive layer is removed to expose the first dielectric layer at the alignment mark region. The remaining conductive layer is patterned to form a component at the active region. A second dielectric layer with a smooth surface is formed over the substrate to cover the component. A wire is formed on the second dielectric layer, wherein a distance between the wire and the alignment mark region is larger than a distance between the component and the alignment mark region.
Abstract:
The method in the present invention for forming insulation over conductor includes the following steps. At first, a substrate with a first conductor formed over is provided. The first conductor can be either a gate structure or an interconnection layer. A dielectric layer is then formed over the first conductor the substrate. A portion of the dielectric layer is removed for having a recess free sidewall on the dielectric layer around the first conductor. An insulation for succeeding conductive layer is formed.
Abstract:
A process for forming a double-layer crown capacitor is provided for increasing the surface area of the capacitor and is applied to a memory unit. The process includes: a) forming a contact window, b) forming a first conducting layer, c) forming a second insulator over the first conducting layer, d) forming a second conducting layer, e) forming a third insulator, f) removing portions of the third insulator and the second conducting layer for exposing a part of the second conducting layer to form a masking layer, g) removing another portion of the third insulator and portions of the second insulator and the first conducting layer, h) removing another portion of the second conducting layer and a portion of the second insulator not covered by the masking layer, i) forming spacers alongside the masking layer and another portion of the second insulator, and removing the masking layer and the another portion of the second insulator for defining a first capacitor by the spacers and another portion of the first conducting layer, j) forming a dielectrical layer, and k) forming a third conducting layer to serve as a second capacitor.