Abstract:
A hydraulic fluid feed mechanism that feeds into a shaft (1) of a transmission having a hydraulic control device, by which the hydraulic feed mechanism can be supplied with hydraulic fluid, comprising a transmission housing (3) in which the shaft is held, and a housing cover (7) that is equipped with feed bores (8, 9), by which the hydraulic fluid is fed from the hydraulic control device into the shaft (1). A hydraulic fluid line (12) is positioned between the hydraulic or pneumatic control device and a feed bore (9) in the housing cover (7) that extends parallel to the shaft (1), with this hydraulic fluid line being comprised of a fitting (13) and a tube (14) which is permanently inserted into the fitting at nearly right angles, forming a pressure-tight seal. The fitting (13) is pushed through a transmission housing bore (15) that extends parallel to the shaft (1), is separably inserted into the feed bore (9) forming a pressure-tight seal, and is axially mounted to the transmission housing (3) by a sealing ring (20).
Abstract:
An electric switch has a switch housing, a knob mounted in the housing, a guide gate having latching recesses and arranged inside the switch housing, and a spring-loaded cam follower guided by the guide gate. The switching positions of the switch are defined by interaction of the cam follower with the guide gate and with its latching recesses. The guide gate has damping elements made of elastic material and fitted in the latching recesses.
Abstract:
A metering pump assembly includes a metering space (6) and a displacement body (8) which is linearly movable via a conrod (10). A helical spring (20) designed as a compression spring (20) impinges the conrod (10) with a force in a movement direction. The helical spring (20) at at least one axial end (24) is designed such that in a relaxed condition an end (26) of a spring wire projects axially with respect to a connecting winding (28).
Abstract:
The invention relates to an optoelectronic component, having —a carrier (1) comprising a first main surface (Ia), —at least one optoelectronic semiconductor chip (2) having no substrate, and —a contact metallization (3a, 3b), wherein —the carrier (1) is electrically insulating, —the at least one optoelectronic semiconductor chip (2) is fastened to the first main surface (Ia) of the carrier (1) by means of a bonding material (4), particularly a solder material, —the contact metallization (3a, 3b) covers at least one area of the first main surface (Ia) free of the optoelectronic semiconductor chip (2), and —the contact metallization (3a, 3b) is electrically conductively connected to the optoelectronic semiconductor chip (2).
Abstract:
A method for producing luminous means proposes providing a carrier serving as a heat sink, said carrier comprising a planar chip mounting region. The planar chip mounting region is structured for the purpose of producing a first partial region and at least one second partial region. In this case, the first partial region has a solder-repellent property after structuring. Afterward, a solder is applied to the planar chip mounting region, such that said solder wets the at least one second partial region. At least one optoelectronic body is fixed into the at least one second partial region with the solder at the carrier. Finally, contact-connections are formed for the purpose of feeding electrical energy to the optoelectronic luminous body.