Abstract:
Cryogenic tissue ablation instruments for treating body tissue include an elongate flexible body with a proximal supply port for coupling with a pressurized coolant (e.g., liquid N2O), a supply lumen in fluid communication with the proximal supply port, and an expandable cryogenic balloon carried on a distal portion of the elongate body, the balloon having a wall defining an interior of the balloon. A dispersion member coupled to or otherwise formed out of a distal end portion of the elongate body has an interior lumen in fluid communication with or otherwise comprising a portion of the supply lumen, the dispersion member having one or more coolant dispersion apertures in fluid communication with the balloon interior and sized and located with respect to the balloon wall such that a pressurized flowable coolant in the supply lumen will enter the balloon interior through the one or more apertures in the form of a liquid spray that contacts and provides (through rapid evaporation) substantially uniform cooling of an interior wall surface of a treatment region of the balloon.
Abstract:
A porous weave of bioabsorbable filaments is encased in an elastic membrane to form a thin-walled stent. The stent is sized to be snugly fitted in the proximate portion of the duodenum of a patient, to induce weight loss by limiting uptake of food passing through the stent. After a predetermined period, the stent degrades and passes from the body without surgical intervention.
Abstract:
Disclosed are implantable or insertable medical devices that provide resistance to microbial growth on and in the environment of the device and resistance to microbial adhesion and biofilm formation on the device. In particular, the invention discloses implantable or insertable medical devices that comprise at least one biocompatible matrix polymer region, an antimicrobial agent for providing resistance to microbial growth and a microbial adhesion/biofilm synthesis inhibitor for inhibiting the attachment of microbes and the synthesis and accumulation of biofilm on the surface of the medical device. Also disclosed are methods of manufacturing such devices under conditions that substantially prevent preferential partitioning of any of said bioactive agents to a surface of the biocompatible matrix polymer and substantially prevent chemical modification of said bioactive agents.
Abstract:
A medical device consists of a stent having a first surface and a second surface parallel to the first surface; a single expanded polytetrafluoroethylene (ePTFE) layer contacting the first surface of the stent; and an elastomeric layer applied to at least one surface of the stent. In at least one embodiment, the elastomeric layer is silicone. In at least one embodiment, the medical device is manufactured by positioning the ePTFE layer such that a first surface of the ePTFE layer contacts a first surface of the stent to form a stent-ePTFE assembly; and applying an elastomeric solution to the first surface of the ePTFE layer and at least one surface of the stent.
Abstract:
A cryogenic tissue ablation instrument includes an elongate flexible body with a proximal supply port for coupling with a pressurized coolant, a supply lumen in communication with the proximal supply port, and an expandable balloon carried on the elongate body. A dispersion member coupled to the elongate body has an interior lumen in communication with the supply lumen, the dispersion member having one or more coolant dispersion apertures sized and located such that a pressurized flowable coolant will enter the balloon interior in the form of a liquid spray that contacts and provides substantially uniform cooling of the balloon.
Abstract:
Endoluminally delivered tissue patches and related systems and methods for delivering the tissue patches for treating lesions of the alimentary tract are disclosed. A tissue patch includes a substrate, a tissue implant attached to the substrate, and a protective liner covering at least a portion of the tissue implant. A method includes providing a tissue patch having a tissue implant attached to a substrate and a protective liner covering at least a portion of the tissue implant. The tissue patch is formed into a contracted state and inserted into a lumen containing the lesion. The tissue patch then is positioned in the vicinity of the lesion. After removing the protective liner to reveal the tissue implant, the tissue implant is placed in the lesion.
Abstract:
A medical device includes a handle and a shaft having a working channel. A biopsy port at the exterior of the handle provides a path for instruments leading to the working channel. A conduit that runs through the handle for supplying fluids is also provided a path to the working channel. As compared between the path from the biopsy port to the working channel and the path from the conduit to the working channel, the path from the biopsy port to the working channel is the more direct path of the two.
Abstract:
Various embodiments of a medical device (e.g., tissue acquisition device) having a separate hemostasis capability and related methods of use are disclosed. The device may include an elongated tubular member having a proximal end and a distal end, a tissue cutting member proximate the distal end of the tubular member, and a hemostatic member proximate the distal end of the tubular member and adjacent the tissue cutting member. At least one of the tissue cutting member and the hemostatic member may be fixedly connected to the tubular member.
Abstract:
A porous weave of bioabsorbable filaments having an open mesh configuration is formed into an oblate shape having dimensions greater than the esophageal opening and gastric outlet of a stomach. The resulting prosthesis is deployed in the stomach and is of a size to be retained in the proximate portion thereof for exerting pressure on the upper fundus. The prosthesis limits the amount of food that may be held within the stomach, and exerts pressure on the fundus to create a sensation of being full, resulting in weight loss.
Abstract:
A stenting system for insertion into the lumen of a body duct or vessel for delivering a therapeutic agent to a treatment site on the duct or vessel. The stenting system includes an a tubular stent member having a lumen there through to allow the passage of material, an outer membrane attached to the stent at least a portion of which is porous to the therapeutic agent to allow the agent to pass to the treatment site, an inner membrane attached to the stent which is nonporous to the therapeutic agent to prevent the agent from entering the lumen of the stent, and a chamber located between the inner and outer membranes for holding the therapeutic agent. The therapeutic agent in the chamber may diffuse through the porous portion of the membrane and be deposited directly on the body site.